ELSEVIER

Expert Systems with Applications 29 (2005) 372-382

Expert Systems
with Applications

www.elsevier.com/locate/eswa

A multi-agent coordination model for the variation
of underlying network topology

Yi-Chuan Jiang®*, J.C. Jiang®

2Department of Computing & Information Technology, Centre of Networking and Information Engineering,
Fudan University, Room 409, Yifu Building, Shanghai 200433, China
°Hunan Branch, China United Telecommunications Corporation, Changsha 410001, China

Abstract

In now multi-agent systems, the underlying networks are always dynamic and the network topologies are always changed in the operation.
Therefore, the coordination of agents shall be adjusted for the dynamic network topology. Aiming at the dynamics of underlying network
topology, a novel adaptive multi-agents coordination model is explored in this paper. In the paper, a series of algorithms for multi-agent task
and resource negotiation are provided. The provided algorithms consider the factors of network topology and agent distribution, and can
implement effective task allocation and resource negotiation for current network topology. Therefore, the adaptation of agent coordination

for dynamic underlying network topology can be achieved, which is also proved by the case studies and performance analyses in the paper.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Multi-agent; Coordination; Network topology; Task allocation; Resource negotiation

1. Introduction

In the multi-agent system, the autonomous agents
coordinate to execute the allocated task. An agent can profit
from the actions of other agents, as well as benefit to other
agents. Coordination computing cannot only make
individual agent try its best but also combine agents to
improve the ability of the overall system. Otherwise,
coordination can save system resource and make the agent
system more flexible.

Indeed, cooperation is often considered as one of the key
concepts of agent communities (Buccaafurri, Rosaci, Sarne,
& Palopoli, 2004). Automated intelligent agents inhabiting
a shared environment must coordinate their activities.
According to different system environments, such as the
level of agents cooperation, agents regulation and protocols,
the number and type of agents, and the communication
cost, we can explore different coordination strategies in
multi-agent systems (Kraus, 1997). But, whatever
coordination strategy we explored, to realize effective

* Corresponding author. Tel.: 486 2165643235; fax: +86 2165647894.
E-mail address: jiangyichuan@yahoo.com.cn (Y.-C. Jiang).

0957-4174/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2005.04.015

agent cooperation, we should resolve the following two
key problems: task allocation and resource negotiation.
Only after solving them well, a real effective coordination
strategy may be achieved.

When a multi-agent system wants to execute a task, the
first step is to allocate the task to some agents, which is
called task allocation (Billionnet, Costa, & Sutter, 1992;
Tanaev, Sotskov, & Strusevich, 1994). The main problem in
the task assignment is that no agent is versatile, and each
agent has different capabilities and can only fulfil a subset of
the tasks. Therefore, we should make an effective task
allocation, i.e. get effective tasks-agents mapping strategy.
The main goal of the task allocation is to maximize the
overall performance of the system and to fulfil the tasks as
soon as possible (Kraus & Plotkin, 2000).

There are some existing researches about the agent task
allocation, which can be divided into central controlled
fashion (e.g. Chang, Phiphobmongkol, & Day, 1993;
Georgeff, 1983) and the distributed ones (e.g. Kai-Hsiung
Chang & Day, 1990; Sandholm, 1993; Smith, 1980).

The central controlled fashion is simple to understand
and implement, which mainly adopts a central managing
agent to implement the task allocation, and the managing
agent is assumed to have information about the
constraints and capabilities of all other agents and knowl-
edge about the domain environment (Chang et al., 1993).

http://www.elsevier.com/locate/eswa

Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382 373

Therefore, the managing agent has to contain large storage
of information, and may become the performance
bottleneck.

In distributed task allocation fashion, agent can enact an
auction among the agents and can match agents with tasks
suing a cooperative bidding approach without any central
authority (Palmer, Kirschenbaum, Murton, & Zajac, 2003;
Shehory & Kraus, 1998). In distributed mechanism, there is
no central authority that distributes the task among agents,
and the agents shall reach an efficient task allocation by
themselves, seeking a solution for to fulfil the constraints. A
well-known example of the distributed task allocation is the
Contract Net Protocol (e.g. Sandholm, 1993; Smith, 1980).
Obviously, the distributed task allocation fashion does not
produce a ‘performance bottleneck’ in the system.
However, it is difficult to impose effective control on the
task allocation process. Otherwise, the dynamics of network
topology is difficult to manage in the distributed fashion.

Therefore, similar to Kraus and Plotkin (2000), we
consider the problem of distributed dynamic task allocation
by a collection agents with central controlled model, where
only one distinguished agent (manager) knows about all of
the agent distribution, the network topology, and the agent
capabilities.

A coordination mechanism that works well in a
reasonable static environment will often perform poorly in
a dynamic and fast changing one (Excelente-Toledo &
Jennings, 2004). Therefore, the adaptation of task allocation
for dynamic environment should be addressed. Nowadays,
the networks show themselves a new phenomenon, which is
the network topology dynamics. In the operation of network,
some nodes may enter or depart randomly, some links
among nodes may be built or terminated randomly, and the
distances among nodes may change randomly. Dynamic
network topology modifications are essential for many
reasons, e.g. to maintain a connection due to node mobility.

Aiming at the dynamics of the underlying network
topology, the task allocation of multi-agent system should
adapt itself according to the network topology. Therefore, in
this paper, we introduce some concepts about the agent
distribution and network topology, and present a series of
algorithms for the task allocation for current network
topology. The main difference between the other task
allocation works and our problem is that the factors of
underlying network topology and the agent distribution are
considered in our work. Therefore, our solution can make
the task allocation adapt to the underlying network topology
and agent distribution.

After a task is allocated to a subset of agents, the agents
require some resources to execute the task. However, the
allocated agents may have not enough resources to finish the
task but other agents may have redundant resources.
Therefore, we should solve the agents’ resource shortage
conflicts and effectively accomplish tasks through agent
resource negotiation. An agent can borrow resource from
other agents by resource negotiation. However, a resource

conflict can happen when more than one agent attempts to
seek the same critical resource at the same time (Findler,
1995). In Findler (1995), N.V. Findler proposed a technique
called ‘hierarchical iterative conflict resolution’ which
resolves the conflicts in an iterative manner, based upon a
hierarchy of task priorities. With that technique, agents with
higher priority tasks may take resources belonging to agents
with lower priority. However, the technique in Findler
(1995) does not take the underlying network topology
(e.g. geographically distance between agents) into account,
therefore, it cannot perform well in the dynamic topology
networks. In this paper, we consider the network topology
and the geographically agent distribution, and present a
series of algorithms for agent resource negotiation which
solve the resource conflict according to not only the task
priority but also the geographically agent distribution.
Therefore, our algorithms can make the agent resource
negotiation adapt for the network topology.

Agents should represent their knowledge about the
environment in some forms, such as graph (Schuster,
2000), ontology (Gruber, 1991), etc. In this paper, we only
consider the agent knowledge about the resource
distribution in the network. By considering the resource
ownership and location, we use the linked list to represent
the knowledge of resource distribution, and present an
autonomous agent resource negotiation mechanism. In our
autonomous agent resource negotiation mechanism, agent
can find the geographically nearest resource of the agent
with lower priority task within its own knowledge
about agent distribution, and agents can communicate
their knowledge by the integration of linked list.

The rest of this paper is organized as follows. Section 2
presents the task allocation model and algorithms for
dynamic topology networks. Section 3 addresses the
resource negotiation in dynamic topology networks and
presents the algorithms. Section 4 introduces the linked list
to represent the resource knowledge of agent, and
presents an autonomous resource negotiation mechanism.
In Section 5, the case studies and performance analyses are
described. Finally, Section 6 concludes the paper.

2. Task allocation for dynamic topology networks
2.1. Formal descriptions

Kraus and Plotkin (2000) gives the formal definitions of
the environment for the distributed task allocation for
cooperative agents. However, they do not deal with the
agent distribution in the network and the network topology.
To adapt for the dynamic topology network, now we extend
the formal definitions in Kraus and Plotkin (2000), and
present the formal definitions for the agent coordination in
dynamic topology networks.

We consider a multi-agent system consisting of a set
of agents A which are distributed on a network topology N;

374 Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382

the agents can perform different tasks, the set of all tasks is
T; the execution of each task requires different capabilities
of agents, each agent has some capabilities, the set of all
agent capabilities are denoted as C.

Therefore, in the agent system environments with
dynamic underlying topology network, we can assume
that there are four kinds of binary relations:

(1) p1 ©CAXC such that for any a;EA, ¢;EC, a;p,c; holds
iff agent g; has the capability c;;

(2) p» CAXN such that for any a; €A, n; €N, a;p,n; holds
iff agent g; locates on the node nj;

(3) p3CTXC such that for any t,ET, ¢;EC, t;p3c; holds iff
task ¢; requires the capability c;;

(4) p4CTXA such that for any ;€ T, a;EA, t;p4a; holds iff
task #; is allocated to the agent a;;

In multi-agent systems, each agent has different
capability, and each agent can locate on different host. To
execute a task, some agent capabilities shall be satisfied, and
the task shall be allocated to some agents.

Given a;,a;€A, we denote by Co,» Ca/, € C the set of
capabilities that agent a; and a; has respectively. Two agents
may have the same capability, thus it may be the case that
for some a;,a,€A, C,. N Caj *¢.

Now we assume that there is a task #; T that arrives at
the agent system, and ¢; needs a set of capabilities C, = C,
the cardinality of C, is n. For each ¢; € C;, < C, there may
be several agents that have it. We denote by A;f S A the set
of agents that have the same capability ¢; (c; is required by
task #;). Obviously, it may be the case that for some j;# >,
AP NAP # ¢

In the agent system, the agents are distributed on the
network, therefore, the communication costs among differ-
ent agent sets are different. If more than one agent have the
same capability required by the task, we shall select an agent
among them such that the communication cost between it
and other agents (executing the task) is the minimum.

Therefore, let #; be the task that arrives at the agent
system, C, = {ci, ¢z, ..., c,} be the capabilities set required
by the task ¢, Afi" be the agents set that have the same
capability ¢; (which is required by #,), the problem of agent
task allocation for dynamic topology can be described as
follows.

Finding a set of agents A, = {a}, a2, ..., a"}, where n is the
cardinality of C,, al €A, a? €A, ...ay €A}, soas to the
communication among a.,a?, ...,a" is the minimum.

From above problem description, we can see that the
agent distribution and the network topology (e.g.
communication distance among agents) should be
considered in the task-allocation.

For example, we can suppose a task ¢ needs four
capabilities, C,= {C,,C,,C3,C,4}. The set of agents that have
the capability ¢, is: A;' = {a, a,,as}; the set of agents that
have the capability c, is: A;> ={a,, a4, as,a;}; the set of
agents that have the capability c3 is: A;* ={as, ag, aol;

@ [taskt (needs c1c2c3c4) || @
alloceted to

2N

Fig. 1. An example of the formal descriptions.

the set of agents that have the capability c, is:
At ={ay, a3, a¢,ag}. All of the agents are distributed on a
network topology. To shorten the communication time
among the agents, the task should be allocated to the agents
that have the minimum communication distances. The
example can be seen in Fig. 1.

2.2. Task allocation algorithm

To describe the relation between agent and the capability
in the system, we can give the following definitions:

Definition 1. Agent-capability mapping matrix: AC=[ac;],
where ac;=1 denotes that agent i has the capability ;.

To describe the agent distribution, i.e. the relation
between agent and network node, we provide the definition
of agent-node mapping matrix.

Definition 2. Agent-node mapping matrix: AN={an;],
where an;=1 denotes that agent i locates on node j.

To execute a task, some agent capabilities shall be
required.

Definition 3. Task-capability mapping matrix: T7C=[tc;],
where tc;=1 denotes that the capability j is required by
task i.

Finally, a task should be allocated to some agents. We
provide the definition of task-agent mapping matrix for
describing such relation.

Definition 4. Task-agent mapping matrix: TA =[ta;], where
ta;=1 denotes that task i is allocated to agent j.

We are mainly interested in the communication cost
among agents, so we use the shortest distance among nodes
to describe the underlying network topology.

Definition 5. Network topology matrix: N=n;], where n;;
denotes the shortest distance between node i and j.

To make the task allocation adapt for the dynamic
topology, we can make the task allocation according to the
above matrixes. In our algorithms, we assume that there is a
manager agent who knows all of the matrixes.

Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382 375

Now we realize the ideas in Section 2.1 by the
introduction of the above matrixes, shown as follows.

Algorithm 1. Task-allocation (task: f).

Step 1. Get the set of the capabilities needed by task ¢
from the task-capability mapping matrix 7C, which can be
denoted as C={c, c,...Cp,}.

Step 2. For all ¢;€C:

Get the set A; of the agents that has the capability c; from
the agent-capability mapping matrix AC, which is denotes
as: A;= {a},af, ...,aj]-(’}, where k; denotes that there are k;
agents have the capability c;.

Step 4. Select a; from Ay, a, from A,,..., @, from A, so
as to the total communication distances among them is the
minimum (in current network topology) according to the
agent node mapping matrix AN and the network topology
matrix N.

Step 5. Stop. Now the task 7 can be allocated to
{ar.ay,....a,}

In Algorithm 1, Step 4 is very important, which shall
make the task allocation adapt for the current network
topology and agent distribution. We can express it by a
constraint satisfaction problem (CSP) (e.g. Kumar, 1992;
Liu, Jing, & Tang, 2002), shown as follows.

Let X; be a finite set of variables, X; = {a},a?, ...,a"}, X
is the set of all X;, X=A;XA,X ... XA, (A is the set of the
agents that have the capability c;). Let A be a domain set,

containing a finite and discrete domain for each variable:
A={ApAy LAY, YiEllnld €A,

Therefore, we should find X;, such that V(X;€X, j#i),
the communication distances in X; is more than the ones
of Xl‘.

Let a task need n capabilities, and there are k; agents that
have capability c;, A;={d}'|1 <i; <kj}; k, agents that
have capability c,, Ay ={a3|1 <i, <k,}; ...and k, agents
that have capability c,, A,={a"|1<i,<k,}. Step 4 in
Algorithm 1 can be realized by Algorithm 2.

Algorithm 2. Agents voting
Step 1 Let min_com_cost=maxnumber; allocated_agen-
t_set={};

Step 2 for (intiy=1;i;<=ky;i;++)
for (int ih,=1; L, < =ky; ir+ +)

for (int i,=1; i, < =kp; i, + +)

if com_cost (aj,d3,...,ay) <min_com_
cost

{min_com_cost= com_cost (a,az,...,
an); o A
allocated_agent_set ={a|', a5, ...,ay}

}
Step 3 Output (allocated_agent_set);

The function com_cost is used to compute the total
communication distance among the selected agents, which
is shown as Algorithm 3. In Algorithm 3, an denotes the
element of agent-node mapping matrix AN, n denotes the
element of network topology matrix N.

Algorithm 3. com_cost(agents set A).

/*n; denotes the number of agents in A, n, denotes
the number of network nodes */

Step 1 Let total_com_cost=0; number=0; £[n;]=0

Step 2 for (inti=1; i<=n,; i+ +)
for (int j=1; j<= ny; j+ +)
if an;=1 then {£(i)=j; number+ + };

Step 3 for (int i=1; i< =number; i+ +)
for (int j=1; j< = number; j+ +)
total_comm_cost=total_comm._cost + nzzj);

Step 4 Return (total_comm._cost);

From Algorithm 2, we can see that the time
complexity is too high, which is O(ki*ko*,...,%k,).
Therefore, if the number of capabilities required by a
task or the agents set is too large, then the computation
cost of the algorithm will be too high. So, now we
design an improved algorithm, shown as Algorithm 4,
where C denotes the set of capabilities required by the
task, A denotes the set of agents that have the
capabilities in C. In Algorithm 4, we select the agent
that has the more number of capabilities.

Algorithm 4. Improved algorithm for agent voting

Step 1 Let allocated_agent_set={ };
Step 2 For each agent q, in the A, container;,=0;
Step 3 For each ¢; in C
For each agent g; that have c;,
If ac;;=1, then container;+ +;
Step 4 Select the agent with the highest container, which is
denoted as agent,.
Step 5 Let Cr= the set of capabilities that agent, has;
C=C-Cr;
A=A-agent,;
allocated_agent_set=allocated_agent_set U agent,;
Step 6 Repeat Step 2-5, until C is empty;
Step 7 Output (allocated_agent_set).

In Algorithm 4, we are prone to select the agents
that have more required capabilities which can make
the agent number for allocation be lessened. Therefore,
the communication cost can also be reduced accord-
ingly. Let a task needs n capabilities, and there are k;
agents that have capability c¢;, k, agents that have
capability c,,...,and k, agents that have capability c,.
Obviously, the complexity of Algorithm 4 is O(n*(k; +
ko+...+k,)), which is lower than the one of
Algorithm 2.

376 Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382

3. Resource negotiation for dynamic topology networks

Each agent has different resources, and each resource
may be used by different task. We can use a vector to denote
the relation between resources and tasks, show as follows:

R, = {<ry, 1>, <rp, >, ..., <ry, >}

where r;; is used by ¢, r;> is used by 1,,..., and resource r;; is
free.

If an agent lacks the necessary resources for executing
task, then it may borrow the resources from other agents. Let
agent i want to borrow resource r from other agents and
there are several resource r in the system, and the several
resource r, are owned by different agents and located on
different nodes. Therefore, agent i should select r from a
nearest agent according to the current network topology.
Otherwise, if agent i wants to borrow r from agent j, then
some criterions should be satisfied, such as the comparison
between their executing tasks’ priorities.

Similar to Section 2.1, there are other two binary
relations about the resource in the agent systems:

(1) psCAXR such that for any a;EA, r;ER, a;psr; holds iff
agent a; owns the resource T

(2) pe©AXR such that for any ,ET, r;ER, t;,p77; holds iff
the execution of #; requires resource 7;;

Next we shall use two kinds of matrixes to describe those
two relations.

We can use the agent-resource mapping matrix to
describe the relation between agent and resource.

Definition 6. Agent-resource mapping matrix: AR={[ar;],
where ar;=1 denotes that agent i has resources j.

The execution of task requires some resources, SO we
provide the definition of task-resource mapping matrix.

Definition 7. Task-resource mapping matrix: TR={tr],
where 1r;;=1 denotes that task i needs the resource j.

Now we can design the agent resource negotiation,
shown as Algorithm 5. In Algorithm 5, the N denotes the
networking topology matrix, shown as Definition 5; TA is
the task-agent mapping matrix, shown as Definition 4.

Algorithm 5. Agent resource negotiation (agent i).

Step 1 From TA, get the tasks set T; that assigned to agent i;
Step 2 From TR, get the resources set R; needed by T;
Step 3 From AR, get the resources set R! that agent i has;
Step 4 If not R/ 2 R;, then go to Step 5, else stop;

Step 5 R=R;,—R};

Step 6 From AR, get the agents set A that has the resources
set R;

Step 7 From RN and N, select the agent set A, that is nearest
to agent i and can lend resource to i according to
some criterions.

Step 8 agent i borrows resources from A,.

Step 9 Go to step 4.
Step 7 can be described as follows:

() A,=¢; R"=¢;
(2) From A, select the nearest agent a,;
if a,, can lend some resources (R)) to a;
then {(A=A—{a,};
A,=A,U{a,};
R'=R"U R}
(3) If R” 2R then stop and return A,;
else goto 2).

Then, how can a,, lend some resources to a;, and which
resource can a, lend to a;? Which can be decided according
to the task priority between a,, and a;.

Each agent may have several resources, and each
resource may be executing a task.

For example, let a,, has some resource, shown as { <r,,
1>, <Pt >,<rp3,@>}, which denotes that r,; is
executing 1,1, ,» 1S executing t,,, and r,3 is free.

Now, let @; wants to borrow r,; and r,; from a,.
Obviously, r,;3 can be borrowed immediately since it is free;
However, r,; cannot be borrowed immediately since it is
executing #,;. At first, we can compute the priority of the
task that a, executes and t,;. If the task that a, executes is
higher than the one of t,,;, then a; can borrow the resource
from a,,.

4. Autonomous resource negotiation
by knowledge integration

In Section 3, we provide the algorithms for resource
negotiation for dynamic topology networks. Through the
algorithms in Section 3, we can select the geographical-
nearest agents for resource negotiation, therefore, the
communication cost among agents can be minimized
according to the factual network topology.

However, the algorithms in Section 3 can only be
executed by a central controlled fashion, and, the agent
cannot negotiate with each other directly.

Aiming at those situations, now we propose an
autonomous resource negotiation model. In this model, we
use a data structure to represent the agent’s knowledge
about resource distribution, and agents can integrate
individual knowledge for acquiring an enhanced knowledge
of the whole resource environment.

In our model, if an agent wants to borrow some resources
from other agents, at first it should find the information from
the resource knowledge within itself. If it cannot find the
information within itself, then we can adopt the algorithms
in Section 3.

However, each agent should know the change of network
topology. Therefore, in our autonomous negotiation mech-
anism, there is also a management station in the system

Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382 377

which monitors the network topology and told the agents
about the current topology.

4.1. Knowledge representation of resource

We now provide the knowledge representation about
resource of agents, and describe how to integrate individual
agent knowledge for acquiring an enhanced knowledge of
the whole resource environment.

At the initial phase of the system, each agent only has the
knowledge about its own resources. Therefore, to know
the global knowledge about resources, agents should
integrate their knowledge periodically.

We can use the form of linked list (Ford & Topp, 1996) to
represent the agent’s knowledge about resource. The
independent items in the linked list are called rnodes,
each rnode includes four data fields and a pointer indicating
the ‘next’ item in the list. The rnode structure is shown as
Fig. 2, where name denotes the name of resource, location
denotes the network node where the resource locates,
ownership denotes the agent that the resource is owned
by, executing task denotes the task that the resource is
used by.

In the list within an agent, the rnodes are ordered by the
distance of the resource from the agent, and the nearest
resource is at the head of the list. Therefore, if an agent
wants to borrow resource from other agents, it can select the
first rnode in the list that owns the resource and the priority
of executing task is lower than the agent’s task.

For example, Fig. 3(a) shows the resource knowledge of
agent a;, and Fig. 3(b) shows the resource knowledge of
agent a,.

If a, lacks resource r; while it executes its task, it shall
search the resource information in its resource knowledge.
In its linked list, there are two r|. The r; owned by a3 is
the nearest and the priority of #5 is lower than the priority of
the task executed by a;, so a; can borrow r; from as.

If a, lacks resource r; while it executes its task, it at first
searches its linked list. However, there is no information
about r; in its linked list. Therefore, now we should adopt
the algorithms in Section 3, i.e. the central controlled
fashion.

Typedef struct node{
elementtypel name;
elementtype2 location;
elementtype3 ownership;
elementtype4 executingtask;
struct node * next;

} rnode;

rnode resourceln] ;

Fig. 2. The rnode structure.

EIEE N s En
v v
Lramlaalis || [r7[na[aa[] ||
v v
[ralnala2|~ [}] [rs[ns[a2[~] | |
v v
lrenslas|t1] | [r3]nales| 2] |
@ (b)

Fig. 3. A example of agent resource knowledge.

4.2. Integration of agent resource knowledge

As said above, in the initial phase of the multi-agent
system, each agent only has the knowledge about its own
resources. To achieve the global resource distribution
information, agents need to integrate their resource
knowledge. The integration of resource knowledge can be
realized under the way that each agent broadcasts
its resource knowledge to the agents on geographical
neighboring nodes periodically. Then the agent can
integrate the resource knowledge and arrange the
linked list according to its information about the network
topology from the management station. As the time going,
agents can achieve the global information about resources
step by step.

Therefore, the knowledge integration about resources
of the two agents is shown in Fig. 4. Fig. 4(a) is the
integrated resource knowledge in a;, Fig. 4(b) is the one
in a,. In Fig. 4(a) or (b), the rnodes is arranged
according to the distance of the resource from a; (or a,),
the rnode for the nearest resource is at the head of the
linked list.

[ri|n2[a3[t5] || [ra|[n1]ad| 3] | |
v v
[r8ln2]a1lt5]| || [r8|n2lal 5] | |
v v
r7fndfag[A] | [ran2fag] 5] | |
v v
Lra[n1fad] 3] | | [ra|n3[a2["]]
v v
rfngla2[A]| [7[na[ad] A] |
v v
lr3[n3las|t2] | | [r5[ns[a2[] |
v v
[r6|nsa6| t1] | | [r3[n3]es| 2] | |
v v
[r5]ns|a2] ~| | [r6[ns|a6|t] |
C) (b)

Fig. 4. The resource knowledge after integration.

378 Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382

In the integration of resource knowledge, we mainly
adopt the inserting operation. Therefore, the time
complexity of the integration is O(n).

Each time the network topology is changed, the
management station can probe the current topology and
broadcast the topology information to all agents, and the
agents then re-arranged their linked lists.

5. Case studies and performance analyses

5.1. A case

To simulate the dynamic network topology, we can
consider a M X N grid, and the edges in the grid can always
change. The communication among agents can only go
along the horizontal or vertical directions. We can realize
our multi-agent coordination model in these case studies,
and make analyses for the cases, so as to testify the
effectiveness of our model.

Fig. 5 is the simulated agent system environment. Let
there is a 30X 30 grid, and the distance of all edges are
the same. We can assume the distance of each edge is d.
And the communication cost is the function of d. The
more d is, the more the communication cost is. We put
some agents having different capabilities into the grid
randomly.

5.2. Task allocation

From Fig. 5, the agent-capability mapping matrix is
shown as (1):

11 00 0 0 OO
1 101000 00O
001 00O0O0O0OTGO
01 00O0OT1T1TO0OO0
0001 1O0O0O0O0
0111 0O0O0O0GO o
000 O0OO0OO0OT11
000O0O0OT1TT1T1FPO
0101 10O0O0O0
011 00O0O0O0O0
0101 0O0O0T1FO0
1 1100 0O0O0O

The dimension of agent-node mapping matrix of the
agent system in Fig. 5 is too large, which is 1290, so
now we do not list the whole matrix for saving space,
but only list some elements for the agent location, show
as (2).

anyz =1 anppoz = 1 ans 03 = 1 anjpiz =1
angsy =1 anyzyy =1 angzos =1 anzss; =1
angs;p =1 angy33 =1 anjgg9 =1 anppq99 =1

2)

The network topology matrix N={n;], if the location
of node i is denoted by coordinates (m,n;) in the grid,
and the location of node j is denoted by (m,,n,) in the
grid, then there is:

ny = |my —my| +|np —ny| —1 3

V. {clc2} {r2,r3,r6,r7}
A {clc2,c4} {r2,r4,r8,r9}
& {c3} {r1,r3,r5,r7}
O {c2,c6,c7} {r2,r4}
® {c4,5 {r3,r8,r9,r10}

< @ {c2c3c4 {rLr2r3,7}

Agents
X {c8,c9} {r3,r7,r8}
& {c6,c7,c8 {r4,r7,r10}
4+ {c2,c4,c5} {r2,r3}
v {c2,c3} {r3,r4,r5,r8,r9}
N {c2,c4,c8 {rlr4,r7,10}
& {cl,c2,c3} {r4,r5,r6}
Capabilities Resources

Fig. 5. A simulated agent system environment.

Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382 379

Now let there are 10 tasks that the system shall
execute, and each task needs some capabilities, and the
task-capability mapping matrix is shown as (4).

1 000 0O0O0OT11
001 101001
011 00O0O0O0O0
1 000 O0T1O0T1FO0
0101 01O0T10O0
1 001 00 1O0O0 @
01 01 01UO0O0O0
1 001 0O01O0O0
011 100101
1 001 00O0O0O

Now we consider the task allocation for task ts.
According to (4), we can see that fs5 needs the
capabilities set {cj,c4,c6,c3}. From (1), the agents sets
that respectively has the capability c,, ¢4, c6, cg are A,

AsAsAsg.
Ay ={ay,ay,a4,a4,0a9,a10,a11,a12} Ay ={ay,as,a6,a9,a11}

A ={ay,as} Ag =1{ay,aq,a,}

&)

Now we can use Algorithm 2 to make the task
allocation, then the agents set of task allocation is:

{asag}. Scheme (1)

If we use Algorithm 4 to make the task allocation, then
the agents set of task allocation is:

{a”,a4}. Scheme (2)

Otherwise, we also give some random task allocation
schemes, shown in Table 1. Let the agents in the task
execution implement fully mutual communications, and
then we can compute the communication cost of the
schemes. We can assume the communication cost of each
step in the grid is d.

According to (2) and (3), the shortest distance between ag
and ag is 14, so the communication cost of Scheme (1) is
14d, the shortest distance between a;; and a4 is 19, so the
communication cost of Scheme (2) is also 19d.

Table 1

Performance comparison among different Schemes (1)

Scheme Com_cost Scheme Com_cost
{az,dg} 14d {aﬁ,(lg} 19d
{aii,a4} 19d {ag,as} 24d
{ay,az,a4,a7} 87d {as.a7,a5} 65d
{az,as,a8,a7} 100d {as.ai} 36d
{az.as.as} 45d {as.az,a0} 48d

Under the same way, we can compute the communi-
cation costs of other random schemes, the results are shown
in Table 1. For example, the fully mutual communications
of the scheme {a», as, ag} are {a,<>as, a,<>ag, as<>ag}.
The shortest distance between a, and as is 10d, the shortest
distance between as and ag is 13d, and the shortest distance
between a, and ag is 22d. Therefore, the communication
cost of scheme {a», as, ag} is 45d.

From Table 1, we can see that the communication costs
of Scheme (1), (2) are lower than the ones of other random
schemes. Therefore, our model can produce the optimal task
allocation scheme.

5.3. Resource negotiation

Now we take an example to illustrate the process of
resource negotiation. We consider the optimal task
allocation scheme in Section 5.2, i.e. {a2, a8}.

Let (6) be an agent-resource mapping matrix in the
system, and (7) is the task-resource mapping matrix.

1 010011000
0101 0O0O0T1T1FO0
1010101000
0101 0O0O0O0GO0OT®O
0010O0O0O0T1T11
1 110001000
001 00O0OT1T1TO0OFPO ©
0001 O0O0T1TO0O01
011 00O0O0O0O0O®O0
0011 100O0T1T1F®O0
1 001 001001
00011 1O00O0O0O0
1 01 1 1 1 110
0110111100
0110111110
1 011111011
1110111111
1 1101 1 1110 @
0111111010
0111 1010T12O0
0110011100
0111110111

From (7), we can see that task 5 needs the resources {r,
s, ¥3, I's, ¥, 7, I3, To, F19}. However, from (6), we can see
that agent a, and ag only have the resources {ry, r4, 77, g, ro,

380 Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382

r10}. Therefore, they shall make resource negotiation with
other agents to borrow the resources {ry, r3, rs, rg}.

Now we let the task-agent mapping matrix be shown as
(8), and we also assume the priorities of the tasks is as
follows: t] >t > 13> 1, > t5 > tg > t7 > tg > 1o > 1.

(®)

S O = O O O O

—_

S O = O = O O O O O
()

S =, O =, O O O = O O
S =, O O = O O O = O
SO O O =, O O = O O O
S = O O O O o o o o

SO O O O O O = O O =
- O O O o = O O o ©
SO O O O o O =~ o O ©
S O O = O O O = O =
- O O O O O o o = O
S O O O o o o o o o

The agents set that have the resources {ry, r3, rs, g} i
{ay, as, as, ag, a7, dg, Ao, d11, d12 }, which can be called as A.

Now we can define the distance between an agent a; and
A, shown as (9).

d(A, a)) = min[d(a;, a;)] (€))
a;€A

where d(x;,x;) denotes the shortest path distance between x;
and x;.

According to the agent-node mapping matrix and the
network topology, the agents set A can be arranged
according to the distances to {a,, ag} (computed according
to (9)), shown as {a(,, as, dp, as, dg, Ay, Ay, do, a”}.

According to (8), a¢ is allocated with t;, t5, and #;.
The priority of ¢, is higher than ¢s, therefore, ag cannot lend
the resources to a, and ag. The priority of the tasks allocated
to as is lower than ts, therefore, a; can lend the resources
{r, r3, rs}.

Now, {a,, ag} only need to borrow r¢ from other agents.
The agents set that has the resource r, can be arranged
according to their distances to {a,, ag} as {a;», a;}. The task
that is allocated to a;, is t9 whose priority is lower than the
one of t5, therefore, a;, can lend the resource r¢ to a, and ag.

Therefore, a, and ag can borrow the resources {ry, r3, rs,
re} from {as, a,,}. Obviously, the communication cost for
resource negotiation of this scheme is the minimum.
Therefore, our algorithms can achieve the optimal result.

As far as the autonomous resource negotiation mechan-
ism in Section 4, it selects the nearest resource for
negotiation in the linked list. Therefore, the communication
cost is sure to be the minimum. For saving space, here we do
not make case studies for the autonomous negotiation
mechanism.

Fig. 6. Network topology and agent distribution (2).

5.4. Performance analyses of task allocation for the
changed network topologies and agent distributions

Now we analyze the performance of our task allocation
for the changed network topologies and agent distributions.
Since the analysis of the performance of resource
negotiation is similar to the one of task allocation, so here
we overlook it.

Now we change the topology of the grid and the agent
distribution, and test our algorithms of task allocation. The
grid topology and the agent distribution are shown as Fig. 6.

Now, we assume fg arrives to the system, according to
Algorithm 2 in Section 2.2, the agents set of task allocation
is {aj,ai1,a4}; according to Algorithm 4, the agents set of
task allocation is {a»,a4}. Now we can make some random
task allocation schemes, shown in Table 2. Then, we
compare the communication costs between the constructed
task allocation schemes and other random task allocation
schemes, shown as Table 2.

Table 2
Performance comparison among different schemes (2)

Scheme Com_cost Scheme Com_cost
{an.ai,a4) 25d {aiz.a9,a3} 32d
{az.as} 28d {ai.as.a4} 53d
{az.ag} 31d {az.a0,a3} 60d
{ag,ag,alz} 31d {alz,ag,a4} 51d
{ar,aza4} 63d {az.a0,a4} 71d

R

B
<]
T

Fig. 7. Network topology and agent distribution (3).

Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382 381

Table 3
Performance comparison among different schemes (3)
Scheme Com_cost Scheme Com_cost
{asz,as} 15d {az,as.a11} 27d
{ar.ag} 19d {ar.as,as} 37d
{ain.as} 24d {arasaz} 61d
{az.as.a8} 35d {a.as.a11} 41d
{az,a4.a7} 58d {aiaq.a11} 35d
R
o T H T

Fig. 8. Network topology and agent distribution (4).

Now, we change the network topology and agent
distribution, shown as Fig. 7. We assume t, arrives to the
system, according to Algorithm 2 in Section 2.2, the agents
set of task allocation is {a,,ag}; according to Algorithm 4,
the agents set of task allocation is {a;,ag}. Now we can
compare the communication costs between the constructed
task allocation schemes and other random task allocation
schemes, shown as Table 3.

Now, we change the network topology and agent
distribution, shown as Fig. 8. We assume 7, arrives to the
system, according to Algorithm 2 in Section 2.2, the agents
set of task allocation is {a,}; according to Algorithm 4, the
agents set of task allocation is also {a,}. Now we can
compare the communication costs between the constructed
task allocation schemes and other random task allocation
schemes, shown as Table 4.

Now, we change the network topology and agent
distribution, shown as Fig. 9. We assume ¢, arrives to the
system, according to Algorithm 2 in Section 2.2, the agents
set of task allocation is {a;,,a7}; according to Algorithm 4,
the agents set of task allocation is {a;,a;}. Now we can
compare the communication costs between the constructed
task allocation schemes and other random task allocation
schemes, shown as Table 5.

Table 4

Performance comparison among different schemes (4)

Scheme Com_cost Scheme Com_cost
{az} 0 {ai.as} 4d
{ay,a6} 30d {aia9} 19d
{ar,an} 10d {ai.as} 23d
{ain.ae6} 9d {a12,a0} 21d
{ainan} 16d

Fig. 9. Network topology and agent distribution (5).

Table 5
Performance comparison among different schemes (5)
Scheme Com_cost Scheme Com_cost
{ain.a7} 5d {az,as,a7} 37d
{ay,a;} 7d {az,a,y,a7} 23d
{az.az} 7d {aizag.az7} 43d
{ar.as.a7} 45d {ain.aiaz} 17d
{an.ai1,a7} 15d
120
100
80
60 [
40 -
20
0

—&— Algorithm2 = = = Algorithm 4

Fig. 10. Summary of the performance comparison.

Now we combine the results of all of above cases, shown
as Fig. 10. In Fig. 10, the Y-coordinate denotes the
communication cost, and the X-coordinate denotes the
number of cases. From Fig. 10, we can see that
the communication costs of the schemes produced by our
algorithms are the minimum. Therefore, our model can
produce the optimal task allocation schemes.

6. Conclusion

Coordination mechanism is widely explored in multi-
agent systems. Especially, the task allocation and resource
negotiation are the key issues in the research of agent
coordination.

Nowadays, the topologies of networks are always
changed during their operations, therefore, the multi-agent
systems on such networks shall adapt themselves for

382 Y.-C. Jiang, J.C. Jiang / Expert Systems with Applications 29 (2005) 372-382

the network topology. However, the existing multi-agent
coordination mechanisms do not have such adaptation
ability. In this paper, we explore the agent task allocation
and resource negotiation, and provide some algorithms to
make the agents coordinate themselves for the network
topology. In the provided algorithms, the factors of network
topology and agent distribution are considered. The
algorithms can realize the effective task allocation and
resource negotiation according to the current network
topology, and the optimal result for agent communication
cost can be achieved.

At last, we make some case studies, and make
analyses for the algorithms when the network topology
and agents distribution are changed. From the case
studies and the performance analyses, we conclude that
our algorithms can perform well in the dynamic
networks.

References

Buccaafurri, F., Rosaci, D., Sarne, G. M. L., & Palopoli, L. (2004).
Modeling cooperation in multi-agent communities. Cognitive Systems
Research, 5, 171-190.

Kai-Hsiung Chang, Suebskul Phiphobmongkol, & William B. Day. (1993).
An agent-oriented multiagent planning system. Proceedings of the 1993
ACM conference on computer science (pp. 107-114). Indianapolis,
Indiana, United States.

Excelente-Toledo, Cora Beatriz, & Jennings, Nicholas R. (2004). The
dynamic selection of coordination mechanisms. Autonomous Agents
and Multi-Agent Systems, 9.55-85.

Findler, Nicholas V. (1995). Multiagent coordination and cooperation in a
distributed dynamic environment with limited resources. Artificial
Intelligence in Engineering, 9(3), 229-238.

Ford, William, & Topp, William (1996). Data structures with C+ +.
Prentice Hill, Inc. pp. 383-474.

Georgeff, M. (1983). Communication and interaction in multiagent
planning. In: Proceedings of national conference on artificial
intelligence (pp. 125-129). Washington, DC.

Gruber, T. (1991). The role of common ontology in achieving sharable,
reusable knowledge bases. In J. A. Allen, R. Fikes, & E. Sandewall
(Eds.), Principles of knowledge representation and reasoning:
proceedings of the second international conference (pp. 601-602).
Cambridge, MA: Morgan Kauffman, 601-602.

Kai-Hsiung Chang, & William B. Day. (1990). Adaptive multiagent
planning in a distributed environment. Proceedings of the third
international conference on Industrial and engineering applications
of artificial intelligence and expert systems (Vol. 2) (pp. 828-837).
Charleston, South Carolina, United States.

Kraus, S. (1997). Negotiation and cooperation in multi-agent environment.
Artificial Intelligence, 94, 79-97.

Kraus, Sarit, & Plotkin, Tatjana (2000). Algorithms of distributed task
allocation for cooperative agents. Theoretical Computer Science, 242,
1-27.

Kumar, V. (1992). Algorithm for constraint satisfaction problem: A survey.
Al Magazine, 13(1), 32-44.

Liu, Jiming, Jing, Han, & Tang, Y. Y. (2002). Multi-agent oriented
constraint satisfaction. Artificial Intelligence, 136, 101-104.

Palmer, D., Kirschenbaum, M., Murton, J., & Zajac, K. (2003).
Decentralized cooperative auction for multiple agent task allocation
using synchronized random number generators. Proceedings of the
IEEE/RSJ, international conference on intelligent robots and systems,
Las Vegas, Nevada .

Tumas Sandholm. (1993). An implementation of the contract net
protocol based on marginal cost calculations. Proceedings of the
12th international workshop on distributed artificial intelligence
(pp- 295-308). Hidden Valley, Pennsylvania.

Schuster, Stefan (2000). Knowledge representation and graph transform-
ation. In H. Ehrig, et al. (Ed.), Graph transformation, LNCS 1764 (pp.
228-237). Berlin: Springer, 228-237.

Shehory, Onn, & Kraus, Sarit (1998). Task allocation via
coalition formation among autonomous agents. Artificial Intelligence,
101, 165-200.

Smith, R. G. (1980). The contract net protocol: High-level communication
and control in a distributed problem solver. IEEE Transactions on
Computers, C-29(12), 1104-1113.

Tanaev, V. S., Sotskov, Y. N., & Strusevich, V. A. (1994). Scheduling
theory, multi-stage systems. Dordrecht, Netherlands: Kluwer.

	A multi-agent coordination model for the variation of underlying network topology
	Introduction
	Task allocation for dynamic topology networks
	Formal descriptions
	Task allocation algorithm

	Resource negotiation for dynamic topology networks
	Autonomous resource negotiation by knowledge integration
	Knowledge representation of resource
	Integration of agent resource knowledge

	Case studies and performance analyses
	A case
	Task allocation
	Resource negotiation
	Performance analyses of task allocation for the changed network topologies and agent distributions

	Conclusion
	References

