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a b s t r a c t

The issues of modeling and analyzing diffusion in social networks have been extensively
studied in the last fewdecades. Recently,many studies focus onuncertain diffusionprocess.
The uncertainty of diffusion process means that the diffusion probability is unpredicted
because of some complex factors. For instance, the variety of individuals’ opinions is an
important factor that can cause uncertainty of diffusion probability. In detail, the difference
between opinions can influence the diffusion probability, and then the evolution of
opinions will cause the uncertainty of diffusion probability. It is known that controlling the
diffusion process is important in the context of viral marketing and political propaganda.
However, previous methods are hardly feasible to control the uncertain diffusion process
of individual opinion. In this paper, we present suitable strategy to control this diffusion
process based on the approximate estimation of the uncertain factors. We formulate a
model in which the diffusion probability is influenced by the distance between opinions,
and briefly discuss the properties of the diffusionmodel. Then, we present an optimization
problem at the background of voting to show how to control this uncertain diffusion
process. In detail, it is assumed that each individual can choose one of the two candidates
or abstention based on his/her opinion. Then, we present strategy to set suitable initiators
and their opinions so that the advantage of one candidate will be maximized at the end
of diffusion. The results show that traditional influence maximization algorithms are not
applicable to this problem, and our algorithm can achieve expected performance.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Previous studies have modeled and analyzed various diffusion processes in social networks [1–6]. Generally, each node
in social network is assumed to associate with the binary states-active or inactive. The state of a node may be switched
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based on some rules in the diffusion process. Among the models with different rules, the independent cascade model [3,7]
is one of the models that are used the most widely in diffusion analyses. In the independent cascade model, the state of a
node is switched based on a probability, and each activation process is independent of others. In various cases, the diffusion
probability may be constant [7] or variable [8,9].

Recently, more and more studies have focused on the uncertain diffusion process. The uncertainty of diffusion process
means that the diffusion probability is unpredicted because of some complex factors. Previous study has shown that the
variety of individuals’ opinions is an important factor that can cause uncertainty of diffusion probability [5]. In detail, when
someone receives information from others who hold similar opinions with him/her, he/she will be more likely to perform
the dissemination behavior [10–12]. Besides, it has been known that opinions can evolve as individuals are reported to
assimilate the viewpoints of interacted people [10,13]. Therefore, the diffusion probability becomes uncertain because of
the opinion evolution.

Individuals express their opinions in online social networks frequently, such as the tastes in music or movie [10,13],
the comments about innovations of product [14,15], and attitudes to the advertisements of candidate [16]. Therefore, these
may be various diffusion processes of these opinions in social networks. It means that controlling these uncertain opinion
diffusion processes is very important in the context of viral marketing [17] and political propaganda [16]. However, previous
studies of opinion [13,18–20] just focus on how opinions evolve to the consensus or the polarization states. These studies
usually discuss the influence of network structure, nodal degree or the evolution rules of opinion. As these factors are almost
uncontrollable, it is costly or hardly feasible to control the diffusion process based on the conclusions obtained in these
studies.

In this paper, in order to control the uncertain opinion diffusion, we discuss this diffusion process and develop feasible
strategy to control this diffusion process based on the approximate estimation of the uncertain factors.

1.1. Motivation and contributions

In this paper, we raise the issue of controlling the uncertain opinion diffusion process. In order to show how to control
the diffusion process, we present a diffusion model in which the diffusion probability is modified according to the distance
between the opinions of interacted nodes. Moreover, each node which is exposed to the information can adjust its opinion
depending on the assimilation of others’ opinions.

In detail, our contributions can be divided into two aspects:

• First, based on theoretical analyses and simulations, we briefly discuss the properties of the diffusion model in which
the diffusion probability is influenced by the distance between opinions. Some conclusions are obtained and helpful in
developing strategy to control the diffusion process.

• Second, we present an optimization problem to show how to control the uncertain diffusion process. In detail, wemodel
a voting mechanism in which each node can choose one of the two candidates or abstention based on its opinion. Then,
we present suitable strategy to maximize the advantage of one candidate by setting suitable initiators and their opinions
in the diffusion process.

This paper is organized as follows. In Section 2, we briefly introduce the related work. Section 3 presents our diffusion
model, including the definition of individual opinion, the modification of diffusion probability, and the evolution rule of
opinions. In Section 4, we show the properties of the diffusion model, such as how wide the initiator’s opinion can spread
under different initial distributions of opinions. Then, an optimization problem is provided in Section 5. Finally, we conclude
this paper in Section 6.

2. Related works

2.1. Uncertain diffusion process

Many studies have focused on the diffusion process inwhich the diffusion probability is uncertain. For instance, structural
uncertainty [3,21–23], input of multiple entities [8,9,24,25] and the variety of individuals’ opinions [5] are three factors that
can cause the uncertainty of diffusion probability in previous studies. Adiga et al. [3] raise the issue of diffusion process
interfered by structural uncertainty. The structural uncertainty is generally modeled by rewiring edges in the networks
[3,21]. Additionally, Adiga et al. [3] mathematically investigate the sensitivity of diffusion process to the structural
uncertainty. They also predicted the scales of information spreading affected by the different extents of perturbation. On
the other hand, the spreading of multiple entities in social networks is another interference factor to diffusion probability.
For instance, two competing diseases are introduced, and being infected by one disease gives a node partial or complete
immunity to another [24]. By analyzing the empirical data of multiple contagions in Twitter, Myers and Leskovec reported
the great effects of interaction between cooperating and competing information on spreading probabilities [25]. In addition,
the variety of individuals’ opinions is also an important factor that can cause uncertainty of diffusion probability [5]. The
distance between the opinions of interacted nodes can influence the diffusion probability, and the evolution of opinions
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makes the diffusion probability become uncertain. However, this study [5] just presents a diffusion model and analyzes its
properties. In this paper, we further present an optimization problem to showhow to control the uncertain opinion diffusion
process.

2.2. The issue of opinion

The issue of opinion has been studied from many disciplines [13,18–20]. Three models are used widely to analyze the
opinion formation. They are averaging model [18], bounded confidence model [19] and voter model [26]. In the averaging
model, the nodes update their opinions by averaging their opinions with themean of their neighboring opinions. Besides, in
many studies based on this model, different weights are attached to opinions [18]. Therefore, the result of opinion evolution
heavily depends on these weights. In the bounded confidence model, each node has a confidence bound. If the distance
between a node’s opinion and another opinion is larger than the confidence bound, the node will not care this opinion
at all [19]. In the voter model, at each time step, the nodes randomly choose a neighbor and adopt its opinion [26]. The
opinions in the voter model are usually represented by a binary value, and the condition that all nodes adopt the same
opinion is mainly analyzed. In addition, the opinion evolution in this paper is based on the bounded confidence model.

Although the models of opinion formation are various, the previous studies always focus on how opinions evolve to the
consensus or the polarization states [13,18–20,26,27]. For instance, Lorenz [19] indicates that polarization state may occur
if individuals just assimilate the opinions to which they agree. On the contrary, the assimilation of all opinions usually leads
to consensus state [13]. On the other hand, some studies analyze the co-evolution of opinion and network structure [26,27].
Additionally, Iyengar, Van den Bulte, and Valente [17] discussed the fundamental role of opinion leader in the diffusion
of new product. However, these studies focus on the properties of the opinion evolution rather than a feasible method to
control the opinion formation.

Some studies also care the feasible methods to control the opinion formation [28,29]. Afshar and Asadpour [28] discuss
the influence of informed agents in opinion evolution process. The informed agent in their study is an agent that gradually
and intentionally changes its neighbors’ opinions towards the desired direction. Besides, the major agents are not informed
agents and do not know who is informed agent. Based on various simulations, they analyze how the number of informed
agents, the nodal degree and network structure influence the opinion evolution. AskariSichani and Jalili [29] further discuss
how tomaximize the influence of informed agents by connecting them to suitable node. In detail, the informed agents should
be connected to the nodes with small in-degrees and high out-degree that are connected to high in-degree nodes. Then, the
public opinion will be significantly changed towards the desired direction. The main advantage of this method is that the
public opinion is very close to desired opinion after the evolution process. However, this method is based on a long process
in which nodes repeatedly interact with their neighbors. If the process lasts a lot of time, there may be some noisy factors in
this process, such as the change of network structure [3]. Therefore, we present a method based on a diffusion process that
lasts a short time so that many noisy factors can be ignored.

2.3. The issue of controlling diffusion process

Controlling the diffusion process is an importantmotivation of diffusion analyses. Influencemaximization problem is the
main aspect of controlling the diffusion process [7,14,30–33]. Kempe, Kleinberg and Tardos [7] raise the issue of influence
maximization through a social network. The problem is to find a set of nodes to be active initially such that the expected
number of activated nodes after the diffusion terminates is maximized. Chen et al. [14] discuss the diffusion process in
which opposite information may emerge and propagate, and they present algorithm to maximize the spread of the positive
influence. Chen, Lu and Zhang [30] present a study that care the influencemaximization problem in a time-critical situation.
Their algorithm outperforms previous algorithms that disregard the deadline constraint and delays in diffusion. Besides,
Feng et al. [31] argue that past studies have not considered the impact of novelty decay on influence propagation. In
their study, repeated exposures will have diminishing influence on users. However, in this paper, the traditional influence
maximization algorithms are proved inapplicable to the control of the uncertain opinion diffusion.

3. Model statements

In this section, we describe our model by combining the independent cascade model [3,7] and the evolution of opinions.

3.1. Definition of individual opinion

Let O(i, t) ∈ [−1, 1] denote node i’s opinion at time t [18,19]. Here, O(i, t) = −1 and O(i, t) = 1 denote opposite
extreme opinions. Moreover, let O0 ∈ [−1, 1] denote the opinion that is contained in the information. In other words, O0 is
the opinion of the initiator who triggers the diffusion process. In this paper, O0 cannot be affected by others’ opinions, and
it is the initiator’s opinion at any time.
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Table 1
Main symbols and their meanings.

Symbol Meaning

O0 The opinion that is contained in the information (the initiator’s opinion).
εi The confidence bound of node i.
fO(x) The probability density function of nodes’ initial opinions.
ft (x) The probability density function of the opinions of the nodes which try to activate other nodes at time t .
pt The mean activation probability at time t .
ra Active rate: the rate of the active nodes in social network.
rc Coverage rate: the rate of the nodes that are exposed to the information.
|N| The number of the nodes in network.

3.2. Diffusion model with individual opinion

Let G = (N, E) be a social network and every node in G is considered as an individual. Let X(i, t) denote the state of node
i at discrete time t . Then, we have

X(i, t) =


0, inactive;
1, active. (1)

Here, X(i, t) = 0 means that node i has not received the information or does not perform dissemination behavior after
receiving the information. Correspondingly, X(i, t) = 1 means that node i has diffused the information.

According to the independent cascade model, node can try to activate its neighbors only once after it becomes active.
Besides, in this paper, each active node diffuses not only the information, but also its opinion on the information.

Then, we define the influence of opinions on diffusion probability. Node i activates node j with the probability:

pi,j =


p0e−|O0−O(j,t)|, node i is the initiator;
p0e−

1
2 |(O(i,t)−O(j,t)|− 1

2 |O0−O(j,t)|), otherwise.
(2)

Here, p0 is a basic probability, and pi,j is the modifications of p0 [34].
Each nodemay change its opinion if it is exposed to the information. Let Ai denote the set of opinionswhich can influence

O(i, t), and Ai is φ at the beginning of each time step. If node i’s neighbor node j is active and |O(i, t) − O(j, t)| < εi, O(j, t)
will be added to Ai. Besides, if |O0 − O(i, t)| < εi, O0 will also be added to Ai. Then, we have

O(i, t + 1) =

O(i, t) +


O(j,t)∈Ai

O(j, t)

1 + |Ai|
. (3)

Here, Eq. (3) is based on the bounded confidence model, and εi is a confidence bound [19]. Besides, each opinion can only
influence O(i, t) nomore than once. In other words, although a nodemay receive the information several times, the opinion
O0 can influence the node only once. Moreover, if node j’s opinion changes after it influences O(i, t), it will not influence
O(i, t) again.

In addition, to help clearly describe the proposed theoretical analysis framework, Table 1 provides the main symbols
used in this paper and their specific meanings.

As shown in Fig. 1, each node except the initiator has four possible states. State 1 is the initial state. The possible state
transitions are:

• A node in State 1 is activated at this time step. Its active neighbors’ opinions and O0 are not in its confidence interval. The
node will be in State 3 at next time step.

• A node in State 1 is not activated at this time step. Its active neighbors’ opinions or O0 are in its confidence interval. The
node will be in State 2 at next time step.

• A node in State 1 is activated at this time step. Its active neighbors’ opinions or O0 are in its confidence interval. The node
will be in State 4 at next time step.

• A node in State 2 receives the information again and is activated at this time step. The node will be in state 4 at next time
step.

• A node in State 3 receives the information again, and its active neighbors’ opinions or O0 are in its confidence interval.
The node will be in State 4 at next time step.

4. Properties of the diffusion model

In this section, we briefly discuss the properties of the diffusionmodel based on theoretical analyses and simulations. The
simulations are in two empirical networks (Enron Email network [35,36] and Facebook network [37]). In the Email network,
there are 36692 nodes while the mean degree is 10.26. Besides, there are 63731 nodes in the Facebook network, and the
mean degree is 25.3.
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Fig. 1. The state transition of each node is shown in this figure. The green state means activation. O(i, t) ≠ O(i, 0) means that the node’s opinion has been
influenced by others’ opinions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The illustration of the three probability density functions: (i) fi(x); (ii) fii(x); (iii) fiii(x).

In the simulations, the basic probability p0 = 0.1 ∗ e = 0.2718 so that pi,j ∈ [0.0368, 0.2718]. Based on previous
study [38], it can be known that the thresholds that limit the spread of information in the two empirical networks are
between 0.0368 and 0.2718. Therefore, when p0 = 0.2718, the initiator’s opinion can usually widely spread but not always
activate the most nodes. Then, the simulated phenomena will be more obvious. We will not test different basic probability
because various initial distributions of opinions and confidence bounds can cause different diffusion probabilities. Each trial
is performed with 1000 replications. The node with the largest degree will be set as the unique initiator. For the sake of
simplification, it is assumed that all the nodes have the same confidence bound εi.

Three probability density functions [39] are used to represent the typical states [18,19] of the initial opinions. In
simulations, the initial opinion of each node will be generated randomly based on the probability density functions. The
three probability density functions are shown in the following and Fig. 2:

1. fi(x) = 0.5, x ∈ [−1, 1]. This state indicates the absence of convergent opinions in social networks. For instance,
individuals hold scattered opinions on some fuzzy events because nobody knows the truth.

2. fii(x) =
5

√
2π

e−12.5x2 , x ∈ [−1, 1]. This state represents that most social individuals hold neutral opinion. For instance,
most people hold neutral opinions on some insipid topic, and they have no obvious preference.

3. fiii(x) =


5

√
2π

e−12.5(x+1)2 , x < 0;

5
√
2π

e−12.5(x−1)2 , x ≥ 0.
, x ∈ [−1, 1]. Opposite to fii(x), this probability density function indicates the polarized

opinions which means nodes in social networks are generally distributed in two camps. For instance, individuals hold
polarized opinions on some controversial issues.
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Then, we discuss which value of O0 will lead to the largest active rate.

Theorem 1. Let g(O0) = ra. Besides, let µ denote the mathematical expectation of fO(x). It is assumed that there exist
δ ∈ [−1, 1] andω ≥ 0 satisfy the condition:

 1
y e−x+yfO(x)dx−

 y
−1 e

x−yfO(x)dx > 0when y ∈ [δ−ω, δ) and
 1
y e−x+yfO(x)dx− y

−1 e
x−yfO(x)dx < 0 when y ∈ (δ, δ + ω]. If εi > 0 and µ ∈ [δ − ω, δ + ω], there exists a value ζ ∈ [min(µ, δ),

max(µ, δ)] so that g(ζ ) is the maximum of g(O0).

Proof. Let

f (y) =

 1

−1
p0e−|x−y|fO(x)dx.

Therefore,

f (y) =

 y

−1
p0ex−yfO(x)dx +

 1

y
p0e−x+yfO(x)dx

= p0


e−y

 y

−1
exfO(x)dx + ey

 1

y
e−xfO(x)dx


.

For ∀y0 ∈ [−1, 1],

lim
1y→0

f (y0 + 1y) − f (y0)
1y

= lim
1y→0

p0

e−y0−1y

 y0+1y
−1 exfO(x)dx + ey0+1y

 1
y0+1y e

−xfO(x)dx


1y

−

p0

e−y0

 y0
−1 e

xfO(x)dx + ey0
 1
y0

e−xfO(x)dx


1y


= lim

1y→0

p0e−y0

(e1y

− 1)
 y0
−1 e

xfO(x)dx + e−1y
 y0+1y
y0

exfO(x)dx


1y

−

p0ey0

(e1y

− 1)
 1
y0

e−xfO(x)dx − e1y
 y0+1y
y0

exfO(x)dx


1y


= p0e−y0

 y0

−1
exfO(x)dx lim

1y→0

e−1y
− 1

1y
+ lim

1y→0

e−1y
 y0+1y
y0

exfO(x)dx

1y



+ p0ey0
 1

y0
e−xfO(x)dx lim

1y→0

e1y
− 1

1y
− lim

1y→0

e1y
 y0+1y
y0

exfO(x)dx

1y


.

Let z = e−1y
− 1 so that 1y = − ln(z + 1). Therefore,

lim
1y→0

e−1y
− 1

1y
= lim

1y→0

z
− ln(z + 1)

= lim
z→0

1

− ln(z + 1)
1
z
.

It is easy to know that ln(z + 1)
1
z = e. It means that lim1y→0

e−1y
−1

1y = −1. Correspondingly, lim1y→0
e1y

−1
1y = 1. Based on

the definition of integral, it can be known that
 y0+1y
y0

exfO(x)dx = limn→∞
1y
n

n
i=1 e

ηi fO(ηi) while y0 = η0 < η1 < η2 <

· · · < ηn = y0 + 1y. Then,

lim
1y→0

e−1y
 y0+1y
y0

exfO(x)dx

1y
= lim

1y→0

e−1y lim
n→∞

1y
n

n
i=1

eηi fO(ηi)

1y

= lim
1y→0


e−1y lim

n→∞

1
n

n
i=1

eηi fO(ηi)


.

Here, 1y → 0 means ηi → y0. Therefore, lim1y→0
e−1y  y0+1y

y0 exfO(x)dx
1y = ey0 fO(y0). Correspondingly, lim1y→0

e1y  y0+1y
y0 exfO(x)dx

1y = ey0 fO(y0).



F. Yan et al. / Physica A 449 (2016) 85–100 91

Therefore, lim1y→0
f (y0+1y)−f (y0)

1y exists ∀y0 ∈ [−1, 1] so that f (y) satisfies the derivable condition on [−1, 1]. Then,

f ′(y) = p0

 1

y
e−x+yfO(x)dx −

 y

−1
ex−yfO(x)dx


.

Based on the condition in Theorem 1, it can be known that f ′(y) > 0when y ∈ [δ−ω, δ) and f ′(y) < 0when y ∈ (δ, δ+ω].
Therefore, f (δ) is the local maximum of f (y).

It can be obtained that

pt=1 =

 1

−1
p0e−|x−O0|fO(x)dx.

Therefore, pt=1 = f (O0). It means that pt=1 is maximum at O0 = δ.
Besides,

pt>1 =

 1

−1
ft(y)

 1

−1
p0e−

1
2 |x−y|− 1

2 |O0−x|fO(x)dx

dy.

If εi > 0, nodes’ opinions may be influenced by O0 and their neighbors’ opinions. The co-influence of a node’s neighbors’
opinions leads the node’s opinion to change towards the mathematical expectation of its neighbors’ opinions. Therefore,
nodes’ opinions change towards O0 and µ. It means that ft(y) focuses on a value between O0 and µ. If O0 approaches µ, the
co-influence will be larger so that ft(y)will bemore focused. Then, pt>1 will also be larger. Therefore, along with the opinion
evolution, the value of O0 that leads to the largest pt>1 will change from δ to µ.

Overall, there exists a value ζ ∈ [min(µ, δ),max(µ, δ)] so that g(ζ ) is the maximum of g(O0). �

Theorem 1 presents the possible interval of O0 which will lead to the largest active rate. Then, we discuss the simulated
data in Fig. 3. Considering the value δ in Theorem 1, based on Matlab, we obtain that if fO(x) = fi(x) or fii(x), f ′(y) > 0
when y ∈ [−1, 0) and f ′(y) < 0 when y ∈ (0, 1]. It means that δ exists and δ = 0. If fO(x) = fiii(x), f ′(y) > 0 when
y[−1, −0.869) ∪ (0, 0.869) and f ′(y) < 0 when y(−0.869, 0) ∪ (0.869, 1]. Therefore, δ ≈ 0.869 or −0.869. Besides, the
mathematical expectations of the three probability density functions are zero. Therefore, based on Theorem 1, it can be
known that if fO(x) = fi(x) or fii(x), the active rate reaches maximumwhen O0 = 0. If fO(x) = fiii(x), the maximums of active
rate are in the intervals O0 ∈ [−0.869, 0.869]. These phenomena can be observed in Fig. 3.

There is an interesting phenomenon about the fluctuation of the active rate. In Fig. 3.1(a) (b) and 3.2(a) (b), the fluctuation
of the active rate is not acute when εi = 1. However, in Fig. 3.1(c) and 3.2(c), the fluctuation of the active rate is quite acute
when εi = 1. The reason is that large εi makes nodes’ opinions focus on O0 when fO(x) is not polarized. Therefore, the
diffusion probability is usually large when εi = 1. Then, the fluctuation of the active rate is not acute. On the contrary, if
fO(x) is polarized (fO(x) = fiii(x)), εi = 0.5 cannot make O0 influence the two poles simultaneously so that the diffusion
probability is quite small. However, when εi = 1, O0 = 0 can influence the two poles simultaneously while O0 = −1 or 1
cannot do. Therefore, in Fig. 3.1(c) and 3.2(c), the fluctuation of the active rate is more acute when εi = 1.

In addition, the fluctuation of the active rate is acute if fO(x) = fii(x). It means that O0 can significantly influence the
active rate if most nodes hold similar opinions initially. When nodes’ initial opinions are polarized, the influence of O0 will
be limited. Moreover, in Fig. 3.1(a) (c) and 3.2(a) (c), larger εi leads to larger active rate. The reason is that large εi makes each
node’s opinion be able to influence most other nodes. Then, the opinions will evolve to the consensus state because of the
interaction. Similar conclusion has been presented in Refs. [13,19]. With the convergence of opinions, the average diffusion
probability will increase. On the contrary, if εi is small, the opinions will not necessarily be convergent. The final distribution
of opinions heavily depends on the initial opinions. For instance, if fO(x) = fi(x), the opinions may become several opinion
clusters, and then these opinion clusters cannot influence other clusters. Therefore, the diffusion probability is usually small
if εi is small. The exception occurs in Fig. 3.1(b) and 3.2(b), ra with εi = 0.5may be larger than ra with εi = 1 when O0 is near
0.75 or −0.75. It is because that the opinions are convergent initially, and these opinions can be considered as an opinion
cluster. Larger εi will not make the opinions be more convergent. In this case, O0 = 0.75 or −0.75 can influence the opinion
cluster when εi = 1 but it cannot when εi = 0.5. The influence of O0 = 0.75 makes the opinion cluster become more
scattered in Fig. 3.1(b) and 3.2(b). Therefore, the active rate with εi = 0.5 is larger in this special case. To sum up, larger εi
leads to larger active rate in major cases. In real world, it means that the opinion can spread widely among the people who
will assimilate the opinion that is quite different from their opinions.

Empirically, the knowledge on an objective will influence people’s opinions and the spread of a certain opinion. In detail,
when people have little knowledge or data about an objective, they do not have clear opinions. Because of conformist
mentality, many people just join the mainstream faction and express the opinion that is the most popular. Therefore, the
diffusion probability is usually large so that a rumor will spread fast, just like when fO(x) = fii(x). On the contrary, when
people have enough knowledge or data, they will hold clear opinions. The opinion divergence may be more significant in
this case. Therefore, a certain opinion will spread slowly.
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Fig. 3. The active rates and coverage rates are shown in this figure. The values of εi are 0, 0.5 and 1. The initiator’s opinion changes from −1 to 1.

5. The algorithm to control the uncertain opinion diffusion process

In this section, we discuss how to control the uncertain opinion diffusion process.
Nowadays, online social networks have been greatly popular through which millions of users are connected. It has been

known that the interactions in online social networks can change people’s opinions and their choices [10,13]. For instance,
the information in Twitter has proved to be very powerful in the 2008USpresidential elections [40,41]. Therefore,wepresent
an optimization problem at the background of voting. It is assumed that each node can choose one of the two candidates or
abstention based on its opinion. As shown in themodel statements, the nodes’ opinionsmay change in the diffusion process.
Therefore, the voting result will be influenced. Then, we formulate the problem of which the goal is to set suitable initiators
and their opinions to maximize the advantage of one candidate.

5.1. Voting mechanism

When a node is asked to vote on an issue, it has three choices. Let Vi denote the choice of node i:

Vi =


−1;
0;
1.

(4)

Here, Vi = −1 can represent the support to one of the two candidates while Vi = 1 represents the opposite choice.
Meanwhile, Vi = 0 represents abstention.

Each nodemakes a choice based on its opinion. Then, we define the mapping from opinion to the probabilities of making
choices:

p(Vi = −1) =


−O(i, t), O(i, t) < 0;
0, otherwise. (5)



F. Yan et al. / Physica A 449 (2016) 85–100 93

p(Vi = 1) =


O(i, t), O(i, t) > 0;
0, otherwise. (6)

p(Vi = 0) =

1 − p(Vi = 1), O(i, t) > 0;
1 − p(Vi = −1), O(i, t) < 0;
1, O(i, t) = 0.

(7)

In this section, we will develop strategy to maximize the advantage of one candidate at the end of diffusion. Therefore,
O(i, t) in the three equations is node i’ opinion at the end of diffusion by default.

5.2. Problem formulation and properties

Then,we formulate an optimization problem, called Voting Victory Problem (VVP). The voting victory problem is formally
defined as follows.

Voting Victory Problem (VVP). Let two sets of nodes L = {i|Vi = −1} and R = {i|Vi = 1}. Given k > 0, the goal is to select a
set S of k initiators and set their opinion O0 so that |R| − |L| is maximized at the end of diffusion.

The confidence bound εi and the initial distributions of opinions are uncontrollable in VVP. We can just develop strategy
based on the estimations of them. Therefore, εi and the initial distributions of opinions are assumed to be known in the
problem. For the sake of simplification, it is assumed that all the nodes have the same confidence bound εi.

Overall, we have two sub-tasks for VVP:

• Set the parameter O0;
• Select k initiators to send information.

The selection of initiators will be influenced by O0. Therefore, we will estimate O0 first. Theorem 2 shows the property of
the problem.

Theorem 2. VVP is NP-hard.

Proof. It is assumed that the clustering coefficient of the network is small, and the initial distribution of opinion is scattered.
If εi is small enough, for each node i and its neighbor node j, the inequality |O(i, t) − O(j, t)| > εi can be satisfied. It means
that any nodes cannot influence their neighbors’ opinions, and only O0 is able to influence nodes’ opinions. In this case, VVP
is equivalent to traditional influence maximization problem because larger scope of diffusion will make O0 influence more
nodes. In other words, traditional influence maximization problem can be considered as a special case of VVP. Traditional
influence maximization problem has been proved as NP-hard [7]. Therefore, VVP is also NP-hard. �

5.3. Theoretical analyses and algorithm design

5.3.1. The estimation of the most suitable o0
Let Od denotes the most suitable opinion for initiator in VVP. In other words, |R| − |L| will be maximized if O0 = Od.

Then, we estimate the value of Od.
The confidence bound εi decides the interval of opinions that O0 can influence directly. It means the actual interval that

O0 can influence is [O0 −εi,O0 +εi]. Besides, when a node become active, it diffuses not only the information that contains
O0, but also its own opinion. O0 may have influence on the active node’s opinion. Therefore, active node’s opinion should
also be considered. Then, we estimate the average opinion that is expressed by the active nodes. Let

w1 =

 O0

O0 −εi

fO(x)dx (8)

and

w2 =

 O0 +εi

O0

fO(x)dx. (9)

Here, w1 + w2 denotes the rate of the opinions that can be influenced by O0. Then, we have

l1 =
1
w1

 O0

O0 −εi

xfO(x)dx (10)
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and

l2 =
1
w2

 O0 +εi

O0

xfO(x)dx. (11)

Here, l1 denotes the mathematical expectations of opinions that are in the confidence interval of O0 and smaller than O0. l2
denotes the mathematical expectations of opinions that are in the confidence interval of O0 and larger than O0. Based on l1
and l2, we can estimate the active nodes’ opinions which have been influenced by O0.

l′1 =
1
2
(O0 + l1) (12)

and

l′2 =
1
2
(O0 + l2). (13)

Here, l′1 denotes average opinion that is expressed by the active nodes whose initial opinions are smaller than O0.
Correspondingly, l′2 denotes average opinion that is expressed by the active nodes whose initial opinions are larger than O0.

Based on O0, l′1 and l′2, we can estimate the co-influence of them. Therefore, we have

O′
=

O0 + w1l′1 + w2l′2
1 + w1 + w2

. (14)

Here, O′ represents the composite opinion of O0, l′1 and l′2. The opinions in [O0 −εi,O0] change towards positive direction so
that the p(Vi = 1) may increase and p(Vi = −1) may decrease. It means that |R| − |L| will increase. However, the opinions
in [O0,O0 +εi] change towards negative direction so that |R| − |L| decreases. Therefore, the initiator should try to increase O0
O0 −εi

fO(x)dx and decrease
 O0 +εi
O0

fO(x)dx. Besides, for the opinions in [O0 −εi,O0 +εi], the degrees of the influence of O0

are not the same. Therefore, |O0 − x| should also be considered. Then, we have

ρ1 =

 O0

O0 −εi

|O′
− x|fO(x)dx −

 O0 +εi

O0

|O′
− x|fO(x)dx. (15)

Here, ρ1 denotes the influence of O′. Moreover, l′1 and l′2 may influence the opinions that are not in the confidence interval
of O0. Therefore, it can be obtained that

ρ2 =

 O0 −εi

l′1 −εi

(l′1 − x)fO(x)dx (16)

and

ρ3 =

 l′2 +εi

O0 +εi

(l′2 − x)fO(x)dx. (17)

Overall, we can obtain that

σ(O0) = ρ1 + w1ρ2 + w2ρ3. (18)

Then, σ(Od) should be the maximum of σ(O0).

5.3.2. The selection of the initiators
In this section, we present algorithm to select the initiators.
Traditional influence maximization algorithms usually select the node that has the most neighbors. When the number

of initiators is more than one, the set of nodes that have the most neighbors totally will be selected. For instance, Greedy
algorithm [30] is a classic algorithm in influence maximization problem. In Greedy algorithm, the node that maximizes the
increment of neighbors will be selected as a new initiator. Let ni denote the number of the neighbors of node i. Besides,
let F(i) = ni, and F(S) be the number of the total neighbors of the nodes in set S. Then, the Greedy algorithm is shown in
Algorithm 1.

Algorithm 1. Greedy algorithm

1) initialize S = φ
2) for i = 1 to k do
3) select u = argmaxw∈N\S(F(S ∪ {w}) − F(S))
4) S = S ∪ {u}
5) end for
6) output S
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The performance of Greedy algorithm is quite good. However, the runtime of Greedy algorithm is very high when the
number of initiators or the number of nodes increases. In order to reduce the runtime of algorithm, Chen, Wang and Yang
present the DegreeDiscount algorithm [42]. The runtime of DegreeDiscount algorithm is much lower than that of Greedy
algorithm. The DegreeDiscount algorithm is shown in Algorithm 2.

Algorithm 2. DegreeDiscount algorithm
1) initialize S = φ
2) for i = 1 to |N| do
3) ddi = F(i)
4) initialize ti to 0
5) end for
6) for i = 1 to k do
7) select u = argmaxw{ddw|w ∈ N \ S}
8) S = S ∪ {u}
9) for each neighbor v of u and v ∈ N \ S do
10) tv = tv + 1
11) ddv = dv − 2tv − (dv − tv)tvp
12) end for
13) end for
14) output S

In DegreeDiscount algorithm, p is the diffusion probability. However, the diffusion probability in our model is uncertain.
Therefore, in this section, p is replaced by the average probability pt .

The goal of the two traditional algorithms is to select a set of nodes to maximize the active rate ra. However, the max-
imum ra is not the request in VVP. If ra is large, nodes may receive the information more than once. As mentioned in the
model statements, each node can be influenced by O0 at most once. Therefore, larger ra cannot increase the influence of
O0. On the contrary, a node is influenced by various opinions when it receives the information more than once. Then, the
influence of O0 will be diluted. On the other hand, larger rc can make |R| − |L| become larger if O0 is suitable. The reason
is that larger rc means more nodes can be exposed to the information and may be influenced by O0. Therefore, a larger rc
with a smaller ra is needed in VVP. In order to cause large rc with small ra, we present a heuristic algorithm to select the
initiators. Then, we will compare the heuristic algorithm with the Greedy algorithm and DegreeDiscount algorithm in the
simulations.

In order to decrease ra, the degrees of initiators should not be very large. However, a too small degree will lead to small
rc . Therefore, if node i is chosen as initiator, ni should satisfy the inequality

ni ∗ pt >
1
pt

. (19)

When k increases, the limitation of the degrees of initiators can be weakened. Then, the inequality becomes

ni ∗ pt ∗ k >
1
pt

. (20)

If the inequality above is satisfied, rc will be an acceptable value. Besides, the interval of opinions that O0 can influence
should also be considered. Therefore,

ni ≥
1 O0

O0 −εi
fO(x)dx

. (21)

In the heuristic algorithm, the nodes that cannot satisfy the inequality (20) and (21) will be excluded. Besides, in some
unconnected networks, a node with small degree may be isolated. In order to make the information be able to spread from
the initiator to most nodes, the isolated nodes will also be excluded. Then, among the nodes that are not excluded, the k
nodes with the smallest degrees will be selected. In addition, if the number of nodes that are not excluded is less than k, the
k nodes with the largest degrees in the network will be selected. Overall, Algorithm 3 is obtained.

Then, we discuss the time complexity of Algorithm 3. As mentioned above, the nodes with small degree will be selected
in Algorithm 3. Therefore, the probability that the initiators are the neighbor of each other is very small. It means that
the connection between initiators can be ignored. It is noteworthy that considering the connection between the initiators
leads to the large complexity of Greedy algorithm. Therefore, the complexity of Algorithm 3 is much smaller than that of
Greedy algorithm. If the number of nodes is |N| and the number of initiators is k, the time complexity of Algorithm 3 will be
O(|N| ∗

√
|N| + k ∗ |N|).
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Algorithm 3. Heuristic algorithm for VVP

1) initialize S = φ
2) initialize V = φ
3) initialize w = 0
4) for i = 1 to |N| do
5) initialize bi = 0
6) end for
7) select v = argmaxw∈N(F(w))
8) bv = 1
9) for each edge (i, j) ∈ {(i, j)|(i, j) ∈ E, bi = 0, bj = 1} do
10) bi = 1
11) end for
12) for i = 1 to |N| do
13) if bi = 1 and F(i) ∗ pt ∗ k ≥

1
pt

and F(i) ≥
1 O0

O0−εi
fO(x)dx

do

14) V = V ∪ {i}
15) end if
16) end for
17) if |V | ≥ k do
18) for i = 1 to k do
19) select u = argminw∈(V\S)(F(w))
20) S = S ∪ {u}
21) end for
22) end if
23) else do
24) for i = 1 to k do
25) select u = argmaxw∈(N\S)(F(w))
26) S = S ∪ {u}
27) end for
28) end else
29) output S

5.4. Experiments

In this section, we test our theoretical estimation and algorithm by simulations. The basic probability p0 = 0.1 ∗ e =

0.2718. Each trial is performed with 1000 replications.

5.4.1. The most suitable O0

In each trial, k initiators will be selected randomly, and k = 1, 11, . . . , 101. In the simulations, the initiator’s opinion
O0 = {−1, −0.9, −0.8, . . . , 0.8, 0.9, 1}, and the value which can cause the largest simulated |R| − |L| is the most suitable
O0.

As shown in Tables 2 and 3, themost suitableO0 in Email network and Facebook network are the same. Besides, in the two
networks, the theoretical values are equal to the simulated values inmost cases. Themistake just occurs when fO(x) = fiii(x)
and εi = 1, and the distance between the theoretical value and the simulated value is 0.1. In Tables 2 and 3, the mean
distance between the theoretical values and the simulated values is 0.0167. In addition, the most suitable O0 is constant
when k is varied. The reason is that the fluctuation of ra and rc is not acute enough to change the most suitable O0.

5.4.2. The initiators
In this section, the performance of the heuristic algorithm is tested. The initiators in various simulations are selected

based on the three algorithms or selected randomly. Besides, O0 is set as the most suitable value obtained in above
simulations.

Figs. 4 and 5 show the performance of different algorithms. The curves are the simulated values of (|R| − |L|)/|N| with
different initiators. Besides, εi = 0.5 in Fig. 4 while εi = 1 in Fig. 5. It can be known from the figures that Heuristic algorithm
can lead to expected results. When k is small, none of the four curves is always above others. However, when k increases,
Heuristic algorithm usually leads to the largest |R| − |L|, especially when k > 50.

As shown in Figs. 4 and 5, the initial distribution of opinions and the value of εi can influence the performances of
algorithms. In Fig. 4, if fO(x) = fi(x), the simulated data based on different algorithms are approximately overlapping, and
the distances between them are quite small. When fO(x) = fii(x) or fiii(x), the advantage of the Heuristic algorithm is more
obvious. The reason is that opinions are scattered when fO(x) = fi(x) and εi is small in Fig. 4. The fluctuation of active rate



F. Yan et al. / Physica A 449 (2016) 85–100 97

Table 2
Initiator’s most suitable opinion in Email network.

k fO(x) εi The most suitable O0

1–101

fi(x)
0.5 Theoretical 1

Simulated 1

1 Theoretical 1
Simulated 1

fii(x)
0.5 Theoretical 0.4

Simulated 0.4

1 Theoretical 0.8
Simulated 0.8

fiii(x)
0.5 Theoretical −0.5

Simulated −0.5

1 Theoretical −0.3
Simulated −0.4

Table 3
Initiator’s most suitable opinion in Facebook network.

k fO(x) εi The most suitable O0

1–101

fi(x)
0.5 Theoretical 1

Simulated 1

1 Theoretical 1
Simulated 1

fii(x)
0.5 Theoretical 0.4

Simulated 0.4

1 Theoretical 0.8
Simulated 0.8

fiii(x)
0.5 Theoretical −0.5

Simulated −0.5

1 Theoretical −0.3
Simulated −0.4

does not influence the (|R| − |L|)/|N| obviously in this case. In Fig. 5, if fO(x) = fi(x), the heuristic algorithm is significantly
better than other algorithms. The reason is that εi is large in Fig. 5 so that larger active rate increases the distance between
the performances of algorithms. In addition, if the initial distribution of opinions, network structure and algorithm are fixed,
the performance of algorithm in Fig. 5 is always better than that in Fig. 4. The reason is that larger εi makes opinions become
convergent, and O0 is able to influence more opinions.

In addition, it is unexpected that |R|−|L| based on Greedy algorithm and DegreeDiscount algorithm are smaller than that
based on random selection in many cases. It means that traditional influence maximization algorithms are not applicable to
VVP. In other words, influencing people’s opinions and their choices in votingmay be significantly different from traditional
influence maximization problem. The reason is that the goal of the traditional influence maximization algorithms is to
maximize the number of people who are influenced, not to maximize the total influence on the people. However, in this
problem, the essential goal is to maximize the change of opinions instead of making most people be influenced.

Fig. 6 shows the runtime of different algorithms. The confidence bound εi and the initial distribution of opinions do not
influence the runtime of the algorithms. Therefore, we just show the runtime in different networks. The runtime of Greedy
algorithm increases fast when k increases. The runtime of heuristic algorithm is large although k is small, nonetheless
it increases very slowly when k increases. The reason is that the cost of excluding some nodes is high. DegreeDiscount
algorithm is a famous algorithm with low cost. Although the runtime of heuristic algorithm is always larger than that of
DegreeDiscount algorithm, the distance between the runtime of the two algorithms is not very big if k > 50. Therefore,
when k is larger than 50, the runtime of the heuristic algorithm is acceptable.

6. Conclusions

In this paper, we study the issue of controlling the uncertain diffusion process in which the diffusion probability is
influenced by evolutionary opinions. We present a model by extending the independent cascade model. In our model, each
individual in social network has own opinion, and the probability with which he/she forwards the information is modified
by the distance between his/her opinion and others’. Besides, individual may change his/her opinion by assimilating others’
opinions.

Based on theoretical analyses and simulations, we briefly discuss the properties of diffusion model and obtain some
conclusions. For instance, if most nodes hold similar opinions initially, the initiator’s opinion can significantly influence
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Fig. 4. (|R| − |L|)/|N| with different selection of initiators are shown in this figure. The confidence level εi = 0.5 in these simulations. The initiator’s
opinion is the most suitable value obtained in simulations.

Fig. 5. (|R|− |L|)/|N| with different selection of initiators are shown in this figure. The confidence level εi = 1 in these simulations. The initiator’s opinion
is the most suitable value obtained in simulations.
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Fig. 6. The runtime of different algorithms is shown in this figure. The number of initiators changes from 1 to 101.

the number of people who forward the information. If nodes’ initial opinions are polarized initially, the influence of the
initiator’s opinion will be limited. What is more, larger confidence bound usually lead to larger active rate.

Then, we present an optimization problem at the background of voting to show how to control the diffusion process. In
detail, we model a voting mechanism in which individuals can choose one of the two candidates or abstention, and they
vote with probabilities that depend on their opinions. In order to maximize the advantage of one candidate, we present
theoretical analyses for the problem and develop strategy to influence individuals’ opinions based on the diffusion process.
The results show that traditional influencemaximization algorithms are not applicable to the problem, and our strategy can
achieve the expected performance.

Our work and conclusions can present some inspirations to the real world applications. For instance, when the
distribution of opinions is symmetrical, it is usually thought that the initiator’s most suitable opinion should support our
faction. However, in the simulations, the most suitable value is less than zero when opinions are initially polarized. In
this case, although consolidating the supporters of our faction is useful, reducing the supporters of hostile faction will be
more effective. In addition, at the background of marketing, polarized opinion can be consider as mightily commending a
product while slightly biased opinion can represent the euphemistic commendation. The conclusions in Section 5.4.1 show
that when most people’s opinions are neutral and their confidence bound is small, slightly biased opinion is better than
polarized opinion for the initiators. It means that when the consumers are not biased towards the product but suspicious,
euphemistically commending the product may be better.
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