
 

Abstract 
Animals in social foraging not only present the or-
dered and aggregated group movement but also the 
individual movement patterns of Lévy walks that 
are characterized as the power-law frequency dis-
tribution of flight lengths. The environment and the 
conspecific effects between group members are two 
fundamental inducements to the collective behavior. 
However, most previous models emphasize one of 
the two inducements probably because of the great 
difficulty to solve the behavior conflict caused by 
two inducements. Here, we propose an environ-
ment-driven social force model to simulate overall 
foraging process of an agent group. The social force 
concept is adopted to quantify the conspecific ef-
fects and the interactions between individuals and 
the environment. The cohesion-first rule is imple-
mented to solve the conflict, which means that in-
dividuals preferentially guarantee the collective 
cohesion under the environmental effect. The ob-
tained results efficiently comply with the empirical 
reports that mean the Lévy walk pattern of indi-
vidual movement paths and the high consistency 
and cohesion of the entity group. By extensive 
simulations, we also validate the impact of two in-
ducements for individual behaviors in comparison 
with several classic models.  

1 Introduction 
The environment and the conspecific effects simultaneously 
induce the complex behaviors of an animal group [Pillot et al., 
2011]. Facing to the heterogeneous and uncertain environ-
ment in social foraging, animals adjust the movement speeds 
and the tortuosity of the movement paths [Benhamou, 2007] 
to maximize the foraging efficiency. This tortuous paths 
generally show the Lévy walk pattern which is characterized 
as the power-law frequency distribution P(l) ~ l-  of flight 
lengths (l) with 1 <   3 [Turchin, 1998; Viswanathan et al., 
1996]. Meanwhile, the animal group can still keep the col-
lective cohesion and alternately present the order state or the 
disorder state with moving out of or into the food patches 
[Viswanathan et al., 1996]. The modeling method to repro-
duce the collective behavior has been widely investigated 

[Couzin and Krause, 2003; Han et al., 2011; Li and Jiang, 
2014]. However, in most studies, each agent behaves de-
pending on one of the two inducements and cannot simulta-
neously perform the group-level and individual-level be-
haviors. For instance, some models focus on how the con-
specific effects lead to the consistent behavior of an agent 
group and individual moves according to the average moving 
directions and speeds of neighbors [Reynolds, 1987; Vicsek, 
1995]. Consequently, agents move in the less tortuous line. In 
some other studies, the environment effects determine the 
destination or moving direction of each agent while the group 
consistency in collective movement are generally be ignored 
[Han et al., 2011; Viswanathan et al., 1999].  

However, there is a conflict between the effects of food 
and conspecifics [Dumont and Boissy, 2000; Sibbald and 
Hooper, 2004]. On one hand, the heterogeneous food dis-
tribution in the system drives individuals to access more and 
better food resources. On the other hand, the interactions 
between conspecifics constrain individual behaviors to stay 
in the group [Ballerini et al., 2008; Reynolds, 1987]. There-
fore, the solution to the conflict may be the core to form the 
mechanism of individual Lévy walk pattern in collective 
behavior. According some real field experiments on sheep 
that a single individual never leave the group to pursue better 
food [Dumont and Boissy, 2000; Sibbald and Hooper, 2004], 
a cohesion-first rule is suggested: individuals will guarantee 
the collective cohesion preferentially.  

Thus, this paper mainly aims at simulating the individu-
al-level Lévy walk pattern and the group-level consistency 
and cohesion in an agent-based model. We propose an en-
vironment-driven social force model to describe individual 
behavior strategies. The social force concept is used to 
quantify the physics and psychology motivations to guide 
individual behaviors [Helbing and Molnar, 1995]. The fric-
tion, pull force, and repulsion-attraction force are generally 
applied to characterize individual interactions with the en-
vironmental food and the conspecifics [Li and Jiang, 2014]. 
Individuals make own behavior decision by estimating the 
values and the directions of the three forces autonomously 
and evaluating which effect is firstly considered based on the 
cohesion-first rule. Individuals are the forager on a two di-
mensional square and the food resources are patchily dis-
tributed. For the patchy environment, our model involves a 
switching strategy between the searching paradigm and the 
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feeding paradigm to address environmental mutation, which 
means the transition from food area to waste land or vice 
versa [Fauchald and Tveraa, 2006; Nabe-Nielsen, 2013].  

By extensive simulations, our model can achieve two ob-
jectives: 1) individual movement pattern present the charac-
teristics of Lévy walks and 2) the group still keeps collective 
characteristics under the influence of environment. Mean-
while, by the test on the population density, we find that the 
patchily distributed food causes the conspecific competition 
resulting in disorder and dispersion while the conspecific 
cooperation can emerge with the order movement of all the 
agents if the group moves between patches. 

2 Model Design 

2.1 Individual and Foraging Environment 
The individuals in our model have some general capabilities 
like the seeing, perceiving, moving and feeding. Individuals 
are regarded as the agents that are autonomous and individual 
entities. In Figure 1(a), an agent is shown as an arrow that 
points to moving direction or facing direction and the origin 
represents the location of agent. Agent a is characterized by 
the current location xa and velocity va. The agent has a sight 
distance rs and a two-dimensional view range [- , ] 
[Moussaïd et al., 2011] which are represented by the shadow 
area in Figure 1(a). The food resources can be only perceived 
by eyes. However, agents can locate the companions within 
the perception domain, which are the circular regions with 
the radius rc. The perception domain is divided into the re-
pulsion zone, the comfortable zone and the attraction zone 
[Couzin et al., 2002]. The repulsion zone is a circle area with 
radius dc. The comfortable zone and attraction zone are both 
annular areas with the width ds-dc and rc-ds, respectively 

The environment is represented by two-dimensional N×N 
grids with nonperiodic boundary conditions. The patchiness 
is proposed to describe the heterogeneous distribution of 
resources in the real world [Fauchald and Tveraa, 2006]. The 
pixels (grids) with food are nested in patches. The patches 
denoted as circles of radius rp are distributed discretely and 
randomly. The pixels are indivisible food units that fill 
patches continuously. An arbitrary pixel can be located by a 
unique coordinate pi. An integer value Ai denotes the amount 
of food at the Pixel i (Figure 1(b)). The maximum amount Am 
of food in a pixel is constant. As the agents consume the food, 
Ai will decrease to zero. Here, the food cannot be replenished. 

2.2 Force Representation 
In our model, we consider that the agents hope to keep a 
comfortable distance with companions and are also attracted 
by the preferred food. These motivations are regarded as the 
interactions of agents with the companions and the food, 
which are distinguished into three types of forces based on 
social force model. The interactions among these three forces 
determine the moving directions and speeds of agents. 

Friction 
Li and Jiang in [2014] consider that the food at the location 
where the agent stands presently will obstruct it to leave. This 

effect is similar to “Friction” in Newtonian Mechanics. The 
friction force emerges only if the agent tends to move away 
from current location with food. The value of friction is 
linearly correlated with the amount of food at current pixel. 
The direction of friction is opposite to the direction of ve-
locity. Thus, the friction is given by 

( , ) .
t
a
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                          (1) 

Here, Ff(a,i) is the vector of friction on Agent a at Pixel i. The 
factor  is the “Friction Coefficient” considered as the mag-
nitude of friction and is identical for each agent. 

Pull Force 
In social foraging, the foundational objective of agents is to 
access more food. Thus, the agent tends to move to the pixels 
with abundant food instinctively. The pull force quantifies 
this tendency and drives the agent to the objective pixel. The 
location of objective pixel and the amount of food determine 
the direction and the value of pull force. Pull force is com-
puted by a function with natural exponent [Turchin, 1998]. 
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The factors pi and xa are the location coordinates of Pixel i 
and Agent a. The factor  determine the magnitude of Fp(a,i). 

Repulsion-attraction Force 
Each agent in the group should follow two rules: (1) avoiding 
collision with the near neighbors, (2) approaching the group 
center to avoid being alone [Couzin et al., 2002; Reynolds, 
1987]. The repulsion-attraction force is applied to explain the 
conspecific effects mathematically. Repulsion-attraction 
force means that the repulsion force and the attraction force 
are distinguished by the distance between the focal agent and 
other agents [Jiang, 2009; Li and Jiang, 2014]. The attraction 
force makes agents approach each other. The repulsion force 
makes agents away from each other. 

1( ) , ;
1

1( ) , ;
1

( ) 0, .

c

c

s

s

d d
d

b a
e c

b a

d d
d

b a
e s c

b a

e c s

ea,b d d
e

ea,b d d r
e

a,b d d d

−

−

− −= × × <
− −

− −= × × < <
− −

= < <

x xF
x x

x xF
x x

F

           (3) 

Figure 1: (a) and (b) characterize the individual and foraging 
environment, respectively. 
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Here, Fe(a,b) indicates the repulsion force or the attractive 
force between Agent a and Agent b that is one of neighbors in 
the perception domain of Agent a. Moreover,  is used to 
adjust the magnitude of Fe(a,b).  

The repulsion-attraction force of Agent a at pi, Fe(a|i), is 
the vector sum of Fe(a,b). Meanwhile, Fe(a|i) also presents 
either the repulsion force or the attraction force. Fe(a|i) is 
determined by perceiving the number of neighbors in the 
three zones. If the sum of neighbors in the repulsion zone and 
the comfortable zone is greater than k, Fe(a|i) can be com-
puted by the vector sum of repulsion forces from agents in the 
repulsion zone of Agent a. Otherwise, Fe(a|i) will be equal to 
the vector sum of attraction forces from agents in the attrac-
tion zone. Here, k is the threshold to judge that Agent a lo-
cates at close to group center or the border of the group.  

( )| ( )ab
e eb a

a i a,b∈

≠
=F F                           (4)  

a is the set of neighbors of Agent a deriving from either the 
repulsion zone or the attraction zone. The smaller the value of 
Fe(a|i) is, the more comfortable the Pixel i is for Agent a. 

2.3 The Model 
Agents perform composite movement pattern to enhance 
search efficiency that includes extensive search between 
patches and intensive search within patches [Benhamou, 
2007; Nonaka and Holme, 2007]. The extensive search 
means that individuals travel fast and straight with large 
displacements between patches, but the intensive search 
indicates the low velocities and large turn angles moving 
within patches. Therefore, individuals present two different 
movement paradigms. The continuous foraging process in 
this paper is considered as a switching strategy between two 
movement paradigms: searching paradigm and feeding par-
adigm [Benhamou, 2007; Fauchald and Tveraa, 2006; Na-
be-Nielsen, 2013; Nonaka and Holme, 2007].  

Two decision processes are determined corresponding to 
the two motion paradigms. In the searching paradigm, agents 
make decision through computing resultant force, namely, 
the force analysis. If each agent reaches the force balance, all 
agents will have identical velocity value and direction. In the 
feeding paradigm, agents are hard to reach a force balance 
because of the heterogeneously distributed food. However, 
agents can feed only if they are motionless. The method of 
force analysis is unsuitable for agents’ decision-making in 
the feeding paradigms. Therefore, we consider that agents 

move to the target pixels directly within a time step, and the 
forces here are used to select target pixels by comparing the 
directions and values. Figure 2 shows the critical conditions 
to switch between the two paradigms. 

In the feeding paradigm, with the consumption of the food 
at located pixel, the friction of Agent a at the present position 
cannot resist the repulsion-attractive force. According to the 
cohesion-first rule, agents try to meet own needs of food 
under the premise of staying in the group. Figure 3 shows the 
selecting flow of destination. If agents decide to leave the 
current pixels, two rules must be followed: (1) the value of 
friction acting on focal agent is less than the repul-
sion-attraction force; (2) pixels within sight can provide 
enough friction for the focal agent to resist the repul-
sion-attraction force. Each elements of the set a that consist 
of all the pixels within sight of Agent a is tested by com-
paring the difference value that the value of friction minuses 
the value of repulsion-attraction force. The Pixel j is selected 
because of the maximum difference value in a. It means that 
Agent a can enjoy either relatively abundant food or com-
paratively comfortable position. This selection method 
avoids that too much preference for food leads to the depar-
ture of agents in the group and prevents the fear of social 
isolation and the decrease of the foraging efficiency. After 
the selection, agents move to the target pixels directly. Oth-
erwise, Agent a still remains at the current pixel. 

In the searching paradigm, the destinations of agents at 
next time step may be still codetermined by food distribution 
and conspecific effects. However, when agents know less 
about the destinations of the movement because of the un-
certain environment, the moving directions and velocities 
depend on the interaction between conspecifics. Agents 
balance the stimuli from food and the conspecific effects 
according to Newtonian Mechanics. Based on the force 
analysis, the resultant force Ft(a,i) is used to determine the 
moving direction and velocity of Agent a. 

( , ) ( ( | ) ( , )) ( , ) ( , )t
e p f w wa i a i a j a i a d= + + +F F F F F       (5) 

If a is empty, Fp(a,i) is a null vector. Otherwise, Fp(a,i) is 
determined by the optimal pixel which is selected according 
to the flow diagram in Figure 3. Fw(a,dw) is the force to avoid 
the boundary of simulation space. If dw < D, Fw(a,dw) =  × (D 
- dw) where dw is the vertical distance between Agent a and 
the boundary and D is safe distance. If dw  D, Fw(a,dw) = 0. 

Feeding 
paradigm 

Searching 
paradigm

vi 0 or Ai=0 

vi=0 and Ai 0 
Figure 2: The critical conditions translating between searching 
paradigm and feeding paradigm 

Figure 3: Flow diagram of selecting the destination pixel.
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In this paper, we assume that these forces are stable in one 
time interval. Thus, agents can be considered to perform 
uniformly accelerated motion within one time step. The 
velocity at next time step is calculated by 

 
1 ( , ) .

t
t t
a a

a i t
m

+ = × Δ +Fv v                          (6) 

Then, the position of Agent a at Time t + 1 is 
1 21 ( , ) .

2

t
t t t
a a a

a i t t
m

+ = × × Δ + × Δ +Fx v x                (7) 

Here, t stands for the unit time interval. At time t + 1, Agent 
a locates at the position of xa

t + 1. 

4 Simulation and Analysis 

4.1 Simulation Settings 
To improve the reliability of our model, the environment 
configuration accords with the real field data in the study of 
de Knegt et.al [2007] who have analyzed the relation be-
tween the food density and the movement pattern. The sim-
ulation space is presented by square field with 600 × 600 
pixels and includes mp randomly distributed patches. Food 
density is represented by the percentage of the total areas of 
patches distributed in the square field. To exclude other 
factors that affect the food density, the area of each patch 
obeys the uniform distribution. The amount of food at a pixel 
is stochastic within the region of [0, Am]. If Agent a is at a 
pixel with food, it will consume a portion of the rest food 
every time step [Li and Jiang, 2014].  

We consider that all the agents have same capabilities 
without regard to the personalities, such as mass, sight dis-
tance, visual angle and perception distance [Moussaïd et al., 
2011]. The scale of agent group is ten, and is similar to the 
settings in some relevant literature [Pillot et al., 2010]. The 
velocity has an upper limit to prevent the endlessly increasing 
value because of the non-zero acceleration.  

4.2 Model Validation 

Lévy walk 
The main objective of the section is to prove that our model 
can present the relationship between the flight distribution 
and the food density. The frequency distribution of flight 
lengths can be analyzed by tracking the path of an arbitrary 
agent. The definition of the flight is based on the real field 
studies, and the flight consists of multiple continuous steps in 
the almost same direction [Turchin, 1998; de Knegt et al., 
2007]. Assuming N steps are combined into a flight, there are 
N + 1 positions in this flight. If these N steps are in one flight, 
the N - 1 positions in the middle should be located no more 
than x (set as 3 pixels) away from the line connecting the two 
ends of this flight. There are two reasons that we analyze the 
distribution of flight lengths rather than step lengths (motion 
distance in one time step): first, the step length is constrained 
by the velocity with an upper limit and the sight distance; 
second, the distribution of long steps and short steps cannot 
reflect the changes of moving direction. 

In Figure 4, the frequency distributions of flight lengths is 
taken the logarithm and it can be found that the flight lengths 
comply with the power-law distributions, P(l) ~ l- , compared 
with the linear fitting lines. Simultaneously, an index R2 
(coefficient of determination) is tested to estimate how well 
the simulation data fits the lines of the power-law distribu-
tions. We get  = 2.04 with R2 = 0.95 when food density is 7% 
and  = 2.94 with R2 = 0.92 at the food density of 12%. This 
result approaches the result of real field data (R2 = 0.90 in [de 
Knegt et al., 2007]). Moreover, this simulation data also 
reveals the relation between power-law exponent ( ) and 
food density in the inset of Figure 4. It can be seen that with 
increasing food density the power-law exponent fluctuates 
slightly around 2 at first, then increases to 3, and finally tends 
to keep at about 3. This result agrees with the hypothesis 
from Lévy walks: animals move with   2 at low food den-
sity but with   3 at high food density [de Knegt et al., 2007]. 
This range of  covers almost all the known real-world ob-

Figure 5: The effects of food density. (a) the amount of the 
consumed food; (b) the average moving distance; (c) the 
mean velocity; (d) the sinuosity of per agent. 

Figure 4: The frequency distribution of flight length for 
different food density, where inset shows the dependence 
between power-law exponent  and food density. 
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servations of flight distributions of animals [Han et al., 
2011]. 

Then, we test other correlative indexes to explain how the 
food density influences the behaviors. We conclude the 
trends of the mean amount of food consumed at one time step, 
the step length, average velocity, and sinuosity of path with 
the increase of food density. In Figure 5(a), the food con-
sumed by the agent increases if the food density increases. In 
Figure 5(b), (c) and (d), the mean step length and average 
velocity in one time step present an apparent descending 
trend; on the contrary, the sinuosity of movement path in-
creases. Combining these three graphs, we can see that agents 
adjust the behavior strategies to accommodate the environ-
ment of different food densities. As food density gradually 
increases, agents present shorter step lengths and larger turn 
angles, which make the movement path more tortuous, re-
duce the net displacement and avoid moving out of the cur-
rent patch. Agents also reduce the velocities to prevent from 
missing abundant food sites and capture more food as shown 
in Figure 5a. Therefore, the food distribution is the main 
factor to drive agents to perform different behaviors ac-
cording to the environment-driven social force model. 

Collective Consistency and Cohesion 
In this section, we prove that our model can also present the 
collective consistency and cohesion of the entire group. The 
collective consistency is measured by the group polarization 
[Vicsek, 1995], and the number of neighbors of agents is 
used to describe the collective cohesion [Davidson and 
Morris, 2001]. Group polarization means the order degree of 
alignment and can be obtained by equation (8).  

1

1 .
t

n a
group ta

an =
= × v

v
                           (8) 

Here, n is the scale of the group. If the group is close to 1, the 
group shows the high order state. Inversely, the group aligns 
disorderly if group tends to 0. Here, the high value of group 
polarization denotes that agents reach an agreement on the 
moving direction. As shown in Figure 6, the group polariza-
tion fluctuates with the amount of food. The change in the 
lightness of the grey background indicates the different av-
erage amounts of food at the current pixels of all agents. 
Figure 6 shows that the group polarization varies steeply and 
cannot reach a high value when the background is dark grey 
(low lightness and more food). However, it is easy to reach a 
high value of group polarization with relatively smaller 
fluctuation if the background becomes white (high lightness 
and less food). Therefore, the group consistency is sensitive 
to the amount of food. Furthermore, our model confirms the 
perspective [Buhl et. al., 2006] that food shortage facilitates 
the formation of collective consensus. Due to the uncertainty 
on food locations, cooperation (order) will provide more 
competitiveness than the search of the single agent. However, 
agents begin to seek personal benefit and the competition 
(disorder) emerges when agents travel into a patch.  

The cooperation keeps the agents in an aggregate group, 
and individuals can split temporally because of the competi-
tion [de Jager et al., 2011]. The increased population density 
will reduce the cost of finding the new patches, but popula-

tion density will decrease if food is abundant because the 
communication time between conspecifics in a large group 
can greatly improve the cost of foraging [Davidson and 
Morris, 2001]. The food density is the inherent reason. This 
feature of social foraging can also be presented by our model. 
As shown in Figure 7, the number of neighbors around an 
agent changes over time. The severe fluctuation of the broken 
line means that the value of the number of neighbors hardly 
becomes stable. It is because agents keep on adjusting the 
locations for fitness no matter within or between patches. The 
high value is always along with the low amount of food, and 
the number of neighbors in the continuous area of less food is 
higher than the one in the continuous area of abundant food.  

Comparison with the Existing Models 
In this section, we compare our model with several typical 
models in the patchy foraging environment. The following is 
a list of models in simulations. 

•  Vicsek model (VM) is the self-propelled 
particles model [Vicsek, 1995]. Agent with unlimited 
perception domain determines the moving direction 
depending on average directions of all the members in 
the system. VM can present high consistency (Table 1). 

Figure 6: The group polarization of the flock change with the 
amount of food. 

Figure 7: The neighbors around the focal agent change with the 
amount of food within the constant exploring range of 8 pixels.
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However, because of the absence of the environmental 
effect, agents hardly change moving direction. 
Therefore, the flight distribution fails to follow a 
power-law distribution (Figure 8).  

• Social force model without environment (SF) 
simplifies the collective dynamics based on selective 
attraction and repulsion proposed by Romanczuk and 
Schimansky-Geier [2012]. Individuals with limited 
perception domain determine the moving direction and 
velocity based on the force analysis. This model can 
get high value of group polarization and population 
density (Table 1). However, agents move with the long 
flights much more than the short flights because agents 
cannot perform diverse velocities and are generally 
influenced by balanced forces without the environ-
mental effect (Figure 8). 

• Purely statistical Lévy flight model (LF) is 
applied for the search for randomly distributed target in 
a large space [Viswanathan et al., 1999]. Individuals 
determine the moving distance in a random direction 
according to the probability density function of pow-
er-law distribution (Figure 8). Therefore, this model 
can simulate Lévy Walk patterns of individual (Figure 

8) but present low consistency and cohesion (Table 1) 
without the conspecific effects. 

• Deterministic walk model (DW) is proposed 
by Han et al. [2011], in which individuals directly 
jump to the location of targets (the nearest position 
with the maximum food). Because of the unlimited 
sight distance, the flight length depends on the food 
distribution (Figure 8). In the patchy environment, DW 
can present the power-law distribution of flight length 
perfectly (Figure 8). However, this model cannot sim-
ulate the consistency and agents are dispersive because 
of the absence of conspecific effects (Table 1). 

Therefore, the environment is the core to induce the di-
verse flights and tortuous movement paths. The conspecific 
effects lead to the aggregated and consistent group move-
ment. 

5 Conclusion  
The main contribution of this paper is to implement the 

cohesion-first rule in the environment-driven social force 
model to simulate the collective behavior of a group of agents. 
The environmental effects drive the agent to perform com-
plex patterns of individual movement and the cohesion-first 
rule solves the conflict between the conspecific constraint 
and the food preference. The simulation results accord with 
the empirical results, which mean the Lévy walks of indi-
viduals and the collective characteristics of the entire group.  

Furthermore, our model can help to understand the overall 
movement process of animal groups in social foraging under 
the influence of the conspecifics and the environment. 
Moreover, it is hoped that our model can provide a novel 
perspective in the design of decision-making mechanism. 
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Figure 8: The distribution of flight length from DW, LF, SF, 
and VM. 

Table 1: Environment-driven social force model (ESF) compare with SF, VM, LF, and DW on group polarization 
(GP) and population density (PD, within the constant exploring range of 30 pixels); “/” means that the model does 
not consider the capability or the condition. 

 
Capabilities of individuals GP within 

patch 
GP out of 

patch 
PD within 

patch 
PD out of 

patch Sight dis-
tance Velocity  Perception 

domain
ESF limited diverse limited 0.382 0.768 8.182 8.103
SF / diverse limited / 0.935 / 6.668
VM / constant unlimited / 0.983 / 8.757 
LF limited / / 0.277 0.284 0.053 0.054 
DW unlimited / / 0.297 / 0.542 / 
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