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Web Data Management 
		

	 	Compression and Search 
		

	Lecture 2: Adaptive Huffman, 
	 	 	BWT 



• 
• 
• 
 
 

	Course schedule 
			

Data compression 
Search 
Data compression + Search 
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S Freq Huffman 

a 100000 0 
b 6 10 
c 2 110 
d 1 1110 
e 1 1111 
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Huffman coding 
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H 
										

L 

	Huffman not optimal 
			

=  0.9999 log 1.0001 + 0.00006 log 16668.333 
+ … + 1/100010 log 100010 
≈ 0.00 
				
= (100000*1 + …)/100010 
≈ 1 
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	 		Problems of Huffman coding 
			

•  Huffman codes have an integral # of bits. 
	 	– E.g., log (3) = 1.585 while Huffman may need 
	 		 	2 bits 

•  Noticeable non-optimality when prob of a 
	symbol is high. 

					

=> Arithmetic coding 
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Problems of Huffman coding 

•  Need statistics & static: e.g., single pass 
over the data just to collect stat & stat 
unchanged during encoding 

•  To decode, the stat table need to be 
	transmitted. Table size can be significant 
	for small msg. 

=> Adaptive compression e.g., adaptive 
huffman 
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Adaptive compression 

Encoder 
Initialize the model 
Repeat for each input char 
	( 
	 	Encode char 
	 	Update the model 
	) 

Decoder 
Initialize the model 
Repeat for each input char 
	( 
	 	Decode char 
	 	Update the model 
	) 

Make sure both sides have the same Initialize & update model algorithms. 



Adaptive Huffman Coding (dummy) 

Encoder 
Reset the stat 
Repeat for each input char 
	 	( 
	 	 	Encode char 
	 	 	Update the stat 
	 	 	Rebuild huffman tree 
	 	) 
										
	9 

Decoder 
Reset the stat 
Repeat for each input char 
	( 
	 	Decode char 
	 	Update the stat 
	 	Rebuild huffman tree 
	) 
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Adaptive Huffman Coding (dummy) 

Encoder 
Reset the stat 
Repeat for each input char 
	( 
	 	Encode char 
	 	Update the stat 
	 	Rebuild huffman tree 
	) 

Decoder 
Reset the stat 
Repeat for each input char 
	( 
	 	Decode char 
	 	Update the stat 
	 	Rebuild huffman tree 
	) 

This works but too slow! 
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The key idea 

•  The key idea is to build a Huffman tree that is 
optimal for the part of the message already 
seen, and to reorganize it when needed, to 
maintain its optimality 
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Pro & Con - I 

•  Adaptive Huffman determines the mapping to 
codewords using a running estimate of the 
source symbols probabilities 
– Effective exploitation of locality 

 For example, suppose that a file starts out with a series of a 
character that are not repeated again in the file. In static 
Huffman coding, that character will be low down on the 
tree because of its low overall count, thus taking lots of bits 
to encode. In adaptive huffman coding, the character will 
be inserted at the highest leaf possible to be decoded, 
before eventually getting pushed down the tree by higher-
frequency characters 
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Pro & Con - II 
– only one pass over the data 
•  overhead 
 In static Huffman, we need to transmit someway 
the model used for compression, i.e. the tree shape.  
 This costs about 2n bits in a clever representation. 

   As we will see, in adaptive schemes the overhead 
is nlogn. 

•  sometimes encoding needs some more bits w.r.t. 
static Huffman. But adaptive schemes generally 
compare well with static Huffman 
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Some history 

•  Adaptive Huffman coding was first conceived 
independently by Faller (1973) and Gallager 
(1978) 

•  Knuth contributed improvements to the 
original algorithm (1985) and the resulting 
algorithm is referred to as algorithm FGK  

•  A more recent version of adaptive Huffman 
coding is described by Vitter (1987) and called 
algorithm V 
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An important question 

•  Better exploiting locality, adaptive Huffman 
coding is sometimes able to do better than 
static Huffman coding, i.e., for some messages, 
it can have a greater compression 

•  ... but we’ve assessed optimality of static 
Huffman coding, in the sense of minimal 
redundancy 
  

There is a contradiction? 
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Algorithm FGK - I 

•  The basis for algorithm FGK is the Sibling Property 
(Gallager 1978)  

–  A binary code tree with nonnegative weights has the sibling 
property if each node (except the root) has a sibling and if 
the nodes can be numbered in order of nondecreasing 
weight with each node adjacent to its sibling.  

–  Moreover the parent of a node is higher in the numbering 
 

•  A binary prefix code is a Huffman code if and only if 
the code tree has the sibling property 
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Algorithm FGK - II 

•  Note that node numbering corresponds to the order in which the nodes are combined by 
Huffman’s algorithm, first nodes 1 and 2, then nodes 3 and 4 ... 

2	
a	

3	
b	

5	
d	

6	
e	

5	
c	

11	
f	

32	

21	

11	10	

5	

1	 2	

3	 4	 5	 6	

7	 8	

9	 10	

11	
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Algorithm FGK - III 

•  In algorithm FGK, both encoder and decoder 
maintain dynamically changing Huffman code trees. 
For each symbol the encoder sends the codeword for 
that symbol in current tree and then update the tree 
–  The problem is to change quickly the tree optimal after t 

symbols (not necessarily distinct) into the tree optimal for 
t+1 symbols 

–  If we simply increment the weight of the t+1-th symbols 
and of all its ancestors, the sibling property may no longer 
be valid à we must rebuild the tree 



18	

Algorithm FGK - IV 

•  Suppose next symbol 
is “b” 

•  if we update the 
weigths...  

•  ... sibling property is 
violated!! 

•  This is no more a 
Huffman tree 2	

a	
3	
b	

5	
d	

6	
e	

5	
c	

11	
f	

32	

21	

11	10	

5	

1	 2	

3	 4	 5	 6	

7	 8	

9	 10	

11	 b	

4	

6	

11	

22	

33	

no	more	ordered	by	
nondecreasing	weight	
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Algorithm FGK - V 

•  The solution can be described as a two-phase 
process 
–  first phase: original tree is transformed into 

another valid Huffman tree for the first t symbols, 
that has the property that simple increment 
process can be applied succesfully (How?) 

– second phase: increment process, as described 
previously 
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Algorithm FGK - V 

•  The first phase starts at the leaf of the t+1-th 
symbol 

•  We swap this node and all its subtree, but not its 
numbering, with the highest numbered node of 
the same weight 

•  New current node is  
– the parent of this latter node 

•  The process is repeated until we reach the root 



21	

Algorithm FGK - VI 

•  First phase 
–  Node 2: nothing to 

be done 
–  Node 4: to be 

swapped with node 
5 

–  Node 8: to be 
swapped with node 
9 

–  Root reached: stop! 

•  Second phase 

2	
a	

3	
b	

5	
d	

6	
e	

5	
c	

11	
f	

32	
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11	10	
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1	 2	

3	 4	 5	 6	

7	 8	

9	 10	

11	 b	

4	

6

12	
33	
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Why FGK works? 

•  The two phase procedure builds a valid 
Huffman tree for t+1 symbols, as the sibling 
properties is satisfied 
–  In fact, we swap each node which weight is to be 

increased with the highest numbered node with the 
same weight 

– After the increasing process there is no node with 
previous weight that is higher numbered 
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The Not Yet Seen problem - I 

•  When the algorithm starts and sometimes during 
the encoding we encounter a symbol that has not 
been seen before. 
 How do we face this problem? 
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The Not Yet Seen problem - I 
•  We use a single 0-node (with weight 0) that 

represents all the unseen symbols. When a new 
symbol appears we send the code for the 0-node 
and some bits to discern which is the new 
symbol. 
– As each time we send logn bits to discern the 

symbol, total overhead is nlogn bits 
–  It is possible to do better, sending only the index of 

the symbol in the list of the current unseen symbols. 
 In this way we can save some bit, on average 
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The Not Yet Seen problem - II 

•  Then the 0-node is splitted into two leaves, that 
are sibling, one for the new symbol, with 
weight 1, and a new 0-node 

•  Then the tree is recomputed as seen before in 
order to satisfy the sibling property 
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Algorithm FGK - summary 

•  The algorithm starts with only one leaf node, 
the 0-node. As the symbols arrive, new leaves 
are created and each time the tree is 
recomputed 

•  Each symbol is coded with its codeword in the 
current tree, and then the tree is updated 

•  Unseen symbols are coded with 0-node 
codeword and some other bits are needed to 
specify the symbol 
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Algorithm FGK - VII 
•  Algorithm FGK compares favourably with static 

Huffman code, if we consider also overhead 
costs (it is used in the Unix utility compact) 

•  Exercise 
–  Construct the static Huffman tree and the FGK tree for the 

message e eae de eabe eae dcf  and evaluate the number of 
bits needed for the coding with both the algorithms, ignoring 
the overhead for Huffman 
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Algorithm FGK - VIII 

•  if T=“total number of bits transmitted by algorithm FGK for a 
message of length t containing n distinct symbols“, then 

 where S is the performance of the static Huffman (Vitter 1987) 

•  So the performance of algorithm FGK is never much worse than 
twice optimal  

1    2 4 2S n T S t n− + ≤ ≤ + − +
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Algorithm V - I 

•  Vitter in his work of the 1987 introduces two 
improvements over algorithm FGK, calling the new 
scheme algorithm 

•  As a tribute to his work, the algorithm is become 
famous... with the letter flipped upside-down... 
algorithm  

Λ

V
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The key ideas - I 

•  swapping of nodes during encoding and decoding is 
onerous 
–  In FGK algorithm the number of swapping (considering a 

double cost for the updates that move a swapped node two 
levels higher) is bounded by             , where     is the length 
of the added symbol in the old tree (this bound require 
some effort to be proved and is due to the work of Vitter) 

–  In algorithm V, the number of swapping is bounded by 1 

2td⎡ ⎤⎢ ⎥ td
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The key ideas - II 

•  Moreover algorithm V, not only minimize                as 
Huffman and FGK, but also          ,i.e. the height of the tree, 
and       , i.e. is better suited to code next symbol, given it 
could be represented by any of the leaves of the tree 

 

•  This two objectives are reached through a new numbering 
scheme, called implicit numbering 

i i
i
w l∑

max il
i

i
l∑
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Implicit numbering 

•  The nodes of the tree are numbered in increasing 
order by level; nodes on one level are numbered 
lower than the nodes on the next higher level 

•  Nodes on the same level are numbered in increasing 
order from left to right 

•  If this numbering is satisfied (and in FGK it is not 
always satisfied), certain types of updates cannot 
occur 
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An invariant 

•  The key to minimize the other kind of interchanges is 
to maintain the following invariant 

–  for each weight w, all leaves of weight w precede (in the 
implicit numbering) all internal nodes of weight w 

•  The interchanges, in the algorithm V, are designed to 
restore implicit numbering, when a new symbol is read, 
and to preserve the invariant 
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Algorithm V - II 
•  if T=“total number of bits transmitted by algorithm V 

for a message of length t containing n distinct symbols“, 
then 

•  At worst then, Vitter's adaptive method may transmit 
one more bit per codeword than the static Huffman 
method 

•  Empirically, algorithm V slightly outperforms algorithm 
FGK 

1    2 2 1S n T S t n− + ≤ ≤ + − +



13 
Modified from Wikipedia 

a: 01100001 
b: 01100010 

	Adaptive Huffman 
				
abbbbba: 01100001011000100110001001100010011000100110001001100001 
abbbbba: 011000010011000100111101 
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252: W=3 

	d 
251: W=2 

	c 
250: W=2 

	b 
249: W=2 

	a 
248: W=1 

	More example 
				

	 	256: W=17 
		
254: W=7 

	 	 	 	 	e 
	 	 	 	255: W=10 

			
	 	 	253: W=4 

			
	 	 	 	 	 	More aaaa…. coming 
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252: W=4 

	d 
251: W=2 

	c 
250: W=2 

	b 
249: W=2 

	a 
248: W=2 

	More example 
				

	 	256: W=18 
		
254: W=8 

	 	 	 	 	e 
	 	 	 	255: W=10 

			
	 	 	253: W=4 
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252: W=4 

	a 
251: W=3 

	c 
250: W=2 

	b 
249: W=2 

	d 
248: W=2 

	More example 
				

	 	256: W=19 
		
254: W=9 

	 	 	 	 	e 
	 	 	 	255: W=10 

			
	 	 	253: W=5 
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253: W=6 
252: W=4 

	a 
251: W=4 

	c 
250: W=2 

	b 
249: W=2 

	d 
248: W=2 

	More example 
				

	 	256: W=20 
		
254: W=10 

	 	 	 	e 
	 	 	255: W=10 
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253: W=6 
252: W=4 

	a 
251: W=4 

	c 
250: W=2 

	b 
249: W=2 

	d 
248: W=2 

	More example 
				

	 	256: W=20 
		
254: W=10 

	 	 	 	e 
	 	 	255: W=10 



19 

256: W=20 

	e 
255: W=10 

253: W=6 
	a 

252: W=5 

251: W=4 

	c 
250: W=2 

	b 
249: W=2 

	d 
248: W=2 

More example 

254: W=10 
	+1 

+1 
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	e 
254: W=10 

253: W=6 
	a 

252: W=5 

251: W=4 

	c 
250: W=2 

	b 
249: W=2 

	d 
248: W=2 

	More example 
					
256: W=21 					

	 	255: W=11 
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Compared with Static Huffman 

•  Dynamic and can offer better compression 
(cf. Vitter’s experiments) 
– i.e., the tree can be smaller (hence shorter 

the code) before the whole bitstream is 
received. 

•  Works when prior stat is unavailable 
•  Saves symbol table overhead (cf. Vitter’s 

expt) 



Assignment 1 

•  Size Determination of Huffman & LZW 
Encoded File 
– Your task in this assignment is to implement a C 

program that determines the size of a Huffman 
encoded (static & adaptive ) file or LZW encoded 
file when a UTF-8 encoded file is given as input to 
your program.  

– You should detail the sizes 
•  i.e. code + tree 



–  It is in bytes. When the total size is not an integral 
number of bytes, round the remaining bits up to a byte.  

– Your submitted file should be called csize.c/csize.cpp 
– Your program should accept the commandline 

argument –sh, -ah, or -l to determine if Static Huffman, 
Adaptive Huffman or LZW, respectively, should be 
used.  

– When -l is given, a number between 9 and 20 
(inclusively) is expected from the commandline to 
specify the fixed width (in bits) of the codes. Finally, 
the input filename is given as the last argument in the 
commandline.	 

Assignment 1 



•  Your solution should read the input file as 
read-only (because you might not have write 
permission to the file) and should not write out 
any external files.  

•  Any solution that fails to compile on a MS C/
C++ Compiler, fails to read a read-only file, or 
writes out external files, will receive zero 
points for the entire assignment. 

Assignment 1 
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	Recall from Lecture 1’s RLE and 
	 	BWT example 

	

rabcabcababaabacabcabcabcababaa$ 
					

aabbbbccacccrcbaaaaaaaaaabbbbba$ 
					

aab4ccac3rcba10b5a$ 
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	A simple example 
			

Input: 
#BANANAS 

Excerpted from Wikipedia 
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All rotations 
			

	#BANANAS 
	S#BANANA 
	AS#BANAN 
	NAS#BANA 
	ANAS#BAN 
	NANAS#BA 
	ANANAS#B 
	BANANAS# 
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Sort the rows 
			

	#BANANAS 
	ANANAS#B 
	ANAS#BAN 
	AS#BANAN 
	BANANAS# 
	NANAS#BA 
	NAS#BANA 
	S#BANANA 
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	Output 
			

#BANANAS 
ANANAS#B 
ANAS#BAN 
AS#BANAN 
BANANAS# 
NANAS#BA 
NAS#BANA 
S#BANANA 
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	Exercise: you can try the example 
				

rabcabcababaabacabcabcabcababaa$ 
					

aabbbbccacccrcbaaaaaaaaaabbbbba$ 



Now the inverse… 

Input: 
S 
B 
N 
N 
# 
A 
A 
A 
					

	31 
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First add 

S 
B 
N 
N 
# 
A 
A 
A 
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Then sort 

# 
A 
A 
A 
B 
N 
N 
S 
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Add again 

S# 
BA 
NA 
NA 
#B 
AN 
AN 
AS 
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Then sort 

#B 
AN 
AN 
AS 
BA 
NA 
NA 
S# 
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Then add 

S#B 
BAN 
NAN 
NAS 
#BA 
ANA 
ANA 
AS# 
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Then sort 

#BA 
ANA 
ANA 
AS# 
BAN 
NAN 
NAS 
S#B 
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Then add 

S#BA 
BANA 
NANA 
NAS# 
#BAN 
ANAN 
ANAS 
AS#B 
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Then sort 

#BAN 
ANAN 
ANAS 
AS#B 
BANA 
NANA 
NAS# 
S#BA 
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Then add 
			

	S#BAN 
	BANAN 
	NANAS 
	NAS#B 
	#BANA 
	ANANA 
	ANAS# 
	AS#BA 
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Then sort 
			

	#BANA 
	ANANA 
	ANAS# 
	AS#BA 
	BANAN 
	NANAS 
	NAS#B 
	S#BAN 
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Then add 
			

	S#BANA 
	BANANA 
	NANAS# 
	NAS#BA 
	#BANAN 
	ANANAS 
	ANAS#B 
	AS#BAN 
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Then sort 
			

	#BANAN 
	ANANAS 
	ANAS#B 
	AS#BAN 
	BANANA 
	NANAS# 
	NAS#BA 
	S#BANA 
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Then add 
			

	S#BANAN 
	BANANAS 
	NANAS#B 
	NAS#BAN 
	#BANANA 
	ANANAS# 
	ANAS#BA 
	AS#BANA 



45 

Then sort 
			

	#BANANA 
	ANANAS# 
	ANAS#BA 
	AS#BANA 
	BANANAS 
	NANAS#B 
	NAS#BAN 
	S#BANAN 
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Then add 
			

	S#BANANA 
	BANANAS# 
	NANAS#BA 
	NAS#BANA 
	#BANANAS 
	ANANAS#B 
	ANAS#BAN 
	AS#BANAN 
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Then sort (?) 
			

	#BANANAS 
	ANANAS#B 
	ANAS#BAN 
	AS#BANAN 
	BANANAS# 
	NANAS#BA 
	NAS#BANA 
	S#BANANA 
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	 	 	BWT(S) 
			

function BWT (string s) 
	create a table, rows are all possible 
	 	rotations of s 
	sort rows alphabetically 
	return (last column of the table) 
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InverseBWT(S) 
function inverseBWT (string s) 

create empty table 

repeat length(s) times 
insert s as a column of table before first 

	column of the table    // first insert creates 
																																																																			first column 

sort rows of the table alphabetically 
return (row that ends with the 'EOF' character) 



BW0	
The	Main	Burrows-Wheeler	Compression	
Algorithm:	

 

Compressed 
String S’ 

String S BWT 
Burrows-
Wheeler 
Transfor

m 

MTF 
Move-to-

front 

Order-0 
Encoding 

Text	with	
local	
uniformity	

 

Text	in	English	
(similar	
contexts	->	
similar	
character)	

 

Integer	string	
with	many	
small	
numbers	

 



The	BWT	

string with context-regularity 

BWT 

string with spikes (close repetitions) 

s

ŝ

mississippi 

ipssmpissii 



p  i#mississi  p 
p  pi#mississ  i 
s  ippi#missi  s 
s  issippi#mi  s 
s  sippi#miss  i 
s  sissippi#m  i 

i  ssippi#mis  s 

m  ississippi  # 
i  ssissippi#  m 

The	BWT	
T = mississippi# 

mississippi# 
ississippi#m 
ssissippi#mi  
sissippi#mis 

sippi#missis 
ippi#mississ 
ppi#mississi 
pi#mississip 
i#mississipp 
#mississippi 

ssippi#missi 
issippi#miss Sort the rows 

#  mississipp  i 
i  #mississip  p 
i  ppi#missis  s  

F L=BWT(T) 

T 

BWT sorts the characters by their post-context 
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	 	 	Move to Front (MTF) 
			

•  Reduce entropy based on local frequency 
	correlation 

•  Usually used for BWT before an entropy- 
	encoding step 

•  Author and detail: 
						– http://www.arturocampos.com/ac_mtf.html 



Move	To	Front	

•  By	Bentley,	Sleator,	Tarjan	and	Wei		(’86)	
	
 string with spikes (close repetitions) 

ipssmpissii 

integer string with small numbers 
0,0,0,0,0,2,4,3,0,1,0 

move-to-front 

ŝ

's



Move	to	Front	

a,b,r,c,d	abracadabra	



Move	to	Front	

a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	



Move	to	Front	

b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	



Move	to	Front	

r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	



Move	to	Front	

a,r,b,c,d	0,1,2,2	abracadabra	
r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	



Move	to	Front	

c,a,r,b,d	0,1,2,2,3	abracadabra	
a,r,b,c,d	0,1,2,2	abracadabra	
r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	



Move	to	Front	

a,c,r,b,d	0,1,2,2,3,1	abracadabra	
c,a,r,b,d	0,1,2,2,3	abracadabra	
a,r,b,c,d	0,1,2,2	abracadabra	
r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	



Move	to	Front	

0,1,2,2,3,1,4,1,4,4,2	abracadabra	
a,c,r,b,d	0,1,2,2,3,1	abracadabra	
c,a,r,b,d	0,1,2,2,3	abracadabra	
a,r,b,c,d	0,1,2,2	abracadabra	
r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	



ATer	MTF	
•  Now	we	have	a	string	with	small	numbers:	
lots	of	0s,	many	1s,	…	

•  Skewed	frequencies:	Run	ArithmeZc!	
	
 

Character 
frequencies 



Symbol Code List 
a 0 abcde….. 
b 1 bacde….. 
a 1 abcde….. 
a 0 abcde….. 
b 1 bacde….. 
a 1 abcde….. 
c 2 cabde….. 
a 1 acbde….. 
d 3 dacbe….. 

52 

Example: abaabacad 
				

	To transform a general 
	file, the list has 256 
	ASCII symbols. 
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BWT compressor vs ZIP 

From http://marknelson.us/1996/09/01/bwt/ 

BWT+RLE+MTF+AC ZIP (i.e., LZW based) 
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Other ways to reverse BWT 

Consider L=BWT(S) is composed of the 
symbols V0 … VN-1, the transformed string 
may be parsed to obtain: 

– The number of symbols in the substring V0 … 
Vi-1 that are identical to Vi. 

– For each unique symbol, Vi, in L, the number 
of symbols that are lexicographically less than 
that symbol. 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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Example 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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???????] 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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??????A] 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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?????NA] 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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????ANA] 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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???NANA] 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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??ANANA] 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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?BANANA] 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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[BANANA] 



Position Symbol #Matching 
0 B 0 
1 N 0 
2 N 1 
3 [ 0 
4 A 0 
5 A 1 
6 ] 0 
7 A 2 

Symbol #LessThan 

A 0 

B 3 

N 4 

[ 6 

] 7 
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[BANANA] 

Occ / Rank 
C[] 
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A 
A 
A 
B 
N 
N 
[ 
] 
				
	First 

An illustration 
			

	 	B 
	 	N 
	 	N 
	 	[ 
	 	A 
	 	A 
	 	] 
	 	A 

						
	Last 



If	we	know:	
	
	   ‘[‘		is	the	first	char	
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A 
A 
A 
B 
N 
N 
[ 
] 
				
	First 

         ] 
			

	 	B 
	 	N 
	 	N 
	 	[ 
	 	A 
	 	A 
	 	] 
	 	A 

						
	Last 



Or	:	#[BANANA]	
		
	#	is	smaller	than	others	
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A 
A 
A 
B 
N 
N 
[ 
] 
				
	First 

         ] 
			

	 	B 
	 	N 
	 	N 
	 	[ 
	 	A 
	 	A 
	 	] 
	 	A 

						
	Last 
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A 
A 
A 
B 
N 
N 
[ 
] 

A] 
			

	B 
	N 
	N 
	[ 
	A 
	A 
	] 
	A 

Why？ 
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A 
A 
A 
B 
N 
N 
[ 
] 

NA] 
			

	B 
	N 
	N 
	[ 
	A 
	A 
	] 
	A 

How？	
	   2	info	
Why? 
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A 
A 
A 
B 
N 
N 
[ 
] 

ANA] 
			

	B 
	N 
	N 
	[ 
	A 
	A 
	] 
	A 
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A 
A 
A 
B 
N 
N 
[ 
] 

NANA] 
			

	B 
	N 
	N 
	[ 
	A 
	A 
	] 
	A 
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A 
A 
A 
B 
N 
N 
[ 
] 

ANANA] 
			

	B 
	N 
	N 
	[ 
	A 
	A 
	] 
	A 
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A 
A 
A 
B 
N 
N 
[ 
] 

BANANA] 
			

	B 
	N 
	N 
	[ 
	A 
	A 
	] 
	A 
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A 
A 
A 
B 
N 
N 
[ 
] 

[BANANA] 
			

	B 
	N 
	N 
	[ 
	A 
	A 
	] 
	A 



73 

	 	Dynamic BWT ? 
			

Instead of reconstructing BWT, local reordering from the 
	original BWT. 

Details: 
				
Salson M, Lecroq T, Léonard M and Mouchard L (2009). 

	"A Four-Stage Algorithm for Updating a Burrows– 
	Wheeler Transform". Theoretical Computer Science 410 
	(43): 4350. 


