
External Sorting 

•  Sort n records/elements that reside on a disk. 
•  Space needed by the n records is very large. 

§  n is very large, and each record may be large or
 small. 

§  n is small, but each record is very large. 
•  So, not feasible to input the n records, sort,

 and output in sorted order. 



Small n But Large File 

•  Input the record keys. 
•  Sort the n keys to determine the sorted order

 for the n records. 
•  Permute the records into the desired order

 (possibly several fields at a time). 
•  We focus on the case: large n, large file. 



New Data Structures/Concepts 

•  Tournament trees. 
•  Huffman trees. 
•  Double-ended priority queues. 
•  Buffering. 
•  Ideas also may be used to speed algorithms

 for small instances by using cache more
 efficiently. 



External Sort Computer Model 

MAIN 

ALU 

DISK 



Disk Characteristics 

•  Seek time 
§  Approx. 100,000 arithmetics 

•  Latency time 
§  Approx. 25,000 arithmetics 

•  Transfer time 
•  Data access by block 

tracks read/write head 



Traditional Internal Memory Model 

MAIN 

ALU 



Matrix Multiplication 
for (int i = 0; i < n; i++) 
   for (int j = 0; j < n; j++) 
      for (int k = 0; k < n; k++) 
          c[i][j] += a[i][k] * b[k][j]; 

•  ijk, ikj, jik, jki, kij, kji orders of loops yield same result. 

•  All perform same number of operations. 

•  But run time may differ significantly! 



More Accurate Memory Model 
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2D Array Representation In Java, C, and C++ 

int x[3][4]; 
a b c d 

e f g h 

i j k l 

x[] 



ijk Order 
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for (int i = 0; i < n; i++) 
   for (int j = 0; j < n; j++) 
      for (int k = 0; k < n; k++) 
          c[i][j] += a[i][k] * b[k][j]; 



ijk Analysis 
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•  Block size = width of cache line = w. 
•  Assume one-level cache. 
•  C => n2/w cache misses. 
•  A => n3/w cache misses, when n is large. 
•  B => n3 cache misses, when n is large. 
•  Total cache misses = n3/w(1/n + 1 + w).  



ikj Order 
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for (int i = 0; i < n; i++) 
   for (int k = 0; k < n; k++) 
      for (int j = 0; j < n; j++) 
          c[i][j] += a[i][k] * b[k][j]; 



ikj Analysis 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
•  C => n3/w cache misses, when n is large. 
•  A => n2/w cache misses. 
•  B => n3/w cache misses, when n is large. 
•  Total cache misses = n3/w(2 + 1/n).  



ijk Vs. ikj Comparison 

•  ijk cache misses = n3/w(1/n + 1 + w).  
•  ikj cache misses = n3/w(2 + 1/n). 
•  ijk/ikj ~ (1 + w)/2, when n is large. 
•  w = 4 (32-byte cache line, double precision data) 

§  ratio ~ 2.5.  

•  w = 8 (64-byte cache line, double precision data) 
§  ratio ~ 4.5.  

•  w = 16 (64-byte cache line, integer data) 
§  ratio ~ 8.5.  



Prefetch 

•  Prefetch can hide memory latency 
•  Successful prefetch requires ability to

 predict a memory access much in advance 
•  Prefetch cannot reduce energy as prefetch

 does not reduce number of memory
 accesses 



External Sort Methods 

•  Base the external sort method on a fast
 internal sort method. 

•  Average run time 
§ Quick sort 

•  Worst-case run time 
§ Merge sort 



Internal Quick Sort 
•  To sort a large instance, select a pivot element

 from out of the n elements. 
•  Partition the n elements into 3 groups left, middle

 and right. 
•  The middle group contains only the pivot element. 
•  All elements in the left group are <= pivot. 
•  All elements in the right group are >= pivot. 
•  Sort left and right groups recursively. 
•  Answer is sorted left group, followed by middle

 group followed by sorted right group. 



Internal Quick Sort 

6 2 8 5 11 10 4 1 9 7 3 

Use 6 as the pivot. 

2 8 5 11 10 4 1 9 7 3 6 

Sort left and right groups recursively. 



Quick Sort – External Adaptation 

•  3 input/output buffers 
§  input, small, large 

•  rest is used for middle group 

DISK input small large 

Middle group 



Quick Sort – External Adaptation 

•  fill middle group from disk 
•  if next record <= middlemin

 send to small 
•  if next record >= middlemax

 send to large 
•  else remove middlemin or middlemax from middle

 and add new record to middle group 

DISK input small large 

Middle group 



Quick Sort – External Adaptation 

•  Fill input buffer when it gets empty. 
•  Write small/large buffer when full. 
•  Write middle group in sorted order when done. 
•  Double-ended priority queue. 

DISK input small large 

Middle group 



External Sorting 

•  Adapt fastest internal-sort methods. 
ü Quick sort …best average run time. 
•  Merge sort … best worst-case run time. 



Internal Merge Sort Review 

•  Phase 1 
§  Create initial sorted segments 

•  Natural segments 
•  Insertion sort 

•  Phase 2 
§ Merge pairs of sorted segments, in merge

 passes, until only 1 segment remains. 



External Merge Sort 

•  Sort 10,000 records. 
•  Enough memory for 500 records. 
•  Block size is 100 records. 
•  tIO = time to input/output 1 block 

(includes seek, latency, and transmission times) 
•  tIS = time to internally sort 1 memory load 
•  tIM = time to internally merge 1 block load 



External Merge Sort 

•  Two phases. 
§ Run generation. 

Ø A run is a sorted sequence of records. 
§ Run merging. 



Run Generation 

•  Input 5 blocks. 
•  Sort. 
•  Output as a run. 
•  Do 20 times. 

•  5tIO 
•  tIS 

•  5tIO 
•  200tIO + 20tIS 

DISK 

MEMORY 
500 records 

10,000 records 

5 blocks 

100 blocks 



Run Merging 

•  Merge Pass. 
§  Pairwise merge the 20 runs into 10. 
§  In a merge pass all runs (except possibly one)

 are pairwise merged. 
•  Perform 4 more merge passes, reducing the

 number of runs to 1. 



Merge 20 Runs 
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

T1 T2 T3 T4 T5 

U1 U2 U3 

V1 V2 

W1 



Merge R1 and R2 

•  Fill I0 (Input 0) from R1 and I1 from R2. 
•  Merge from I0 and I1 to output buffer. 
•  Write whenever output buffer full. 
•  Read whenever input buffer empty. 
 

DISK Input 0 Input 1 

Output 



Time To Merge R1 and R2 

•  Each is 5 blocks long. 
•  Input time = 10tIO. 
•  Write/output time = 10tIO. 
•  Merge time = 10tIM. 
•  Total time = 20tIO + 10tIM . 



Time For Pass 1 (R    S) 

•  Time to merge one pair of runs                   
 = 20tIO + 10tIM . 

•  Time to merge all 10 pairs of runs                   
 = 200tIO + 100tIM . 



Time To Merge S1 and S2 

•  Each is 10 blocks long. 
•  Input time = 20tIO. 
•  Write/output time = 20tIO. 
•  Merge time = 20tIM. 
•  Total time = 40tIO + 20tIM . 



Time For Pass 2 (S    T) 

•  Time to merge one pair of runs                   
 = 40tIO + 20tIM . 

•  Time to merge all 5 pairs of runs                   
 = 200tIO + 100tIM . 



Time For One Merge Pass 

•  Time to input all blocks = 100tIO. 
•  Time to output all blocks = 100tIO. 
•  Time to merge all blocks = 100tIM . 
•  Total time for a merge pass = 200tIO + 100tIM . 



Total Run-Merging Time 

•  (time for one merge pass) * (number of passes) 
    = (time for one merge pass)  

    * ceil(log2(number of initial runs)) 
    = (200tIO + 100tIM) * ceil(log2(20)) 
    = (200tIO + 100tIM) * 5 



Factors In Overall Run Time 

•  Run generation. 200tIO + 20tIS 
§  Internal sort time. 
§  Input and output time. 

•  Run merging. (200tIO + 100tIM) * ceil(log2(20)) 
§  Internal merge time. 
§  Input and output time. 
§ Number of initial runs. 
§ Merge order (number of merge passes is

 determined by number of runs and merge
 order) 



Improve Run Generation 
•  Overlap input, output, and internal sorting. 

DISK 

MEMORY 

DISK 



Improve Run Generation 

•  Generate runs whose length (on average)
 exceeds memory size. 

•  Equivalent to reducing number of runs
 generated. 



Improve Run Merging 
•  Overlap input, output, and internal merging. 

DISK 

MEMORY 

DISK 



Improve Run Merging 

•  Reduce number of merge passes. 
§ Use higher-order merge. 
§ Number of passes                                              

 = ceil(logk(number of initial runs))            
 where k is the merge order. 



Merge 20 Runs Using 5-Way Merging 
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

T1 

S1 S2 S3 S4 

Number of passes = 2 



I/O Time Per Merge Pass 

•  Number of input buffers needed is linear in
 merge order k. 

•  Since memory size is fixed, block size
 decreases as k increases (after a certain k). 

•  So, number of blocks increases. 
•  So, number of seek and latency delays per

 pass increases. 



I/O Time Per Merge Pass 

merge order k  

I/O
 time
 per
 pass 



Total I/O Time To Merge Runs 

Total I/O
 time to
 merge
 runs 

merge order k  

•  (I/O time for one merge pass)                                    
 * ceil(logk(number of initial runs)) 



Internal Merge Time 

•  Naïve way => k – 1 compares to determine next record to
 move to the output buffer. 

•  Time to merge n records is c(k – 1)n, where c is a constant. 
•  Merge time per pass is c(k – 1)n. 
•  Total merge time is c(k – 1)nlogkr ∼ cn(k/log2k) log2r. 

R1 R2 R3 R4 R5 R6 

O 



Merge Time Using A Tournament Tree 

•  Time to merge n records is dnlog2k, where d is a
 constant. 

•  Merge time per pass is dnlog2k. 
•  Total merge time is (dnlog2k) logkr  = dnlog2r. 

R1 R2 R3 R4 R5 R6 

O 


