Red Black Trees

Colored Nodes Definition

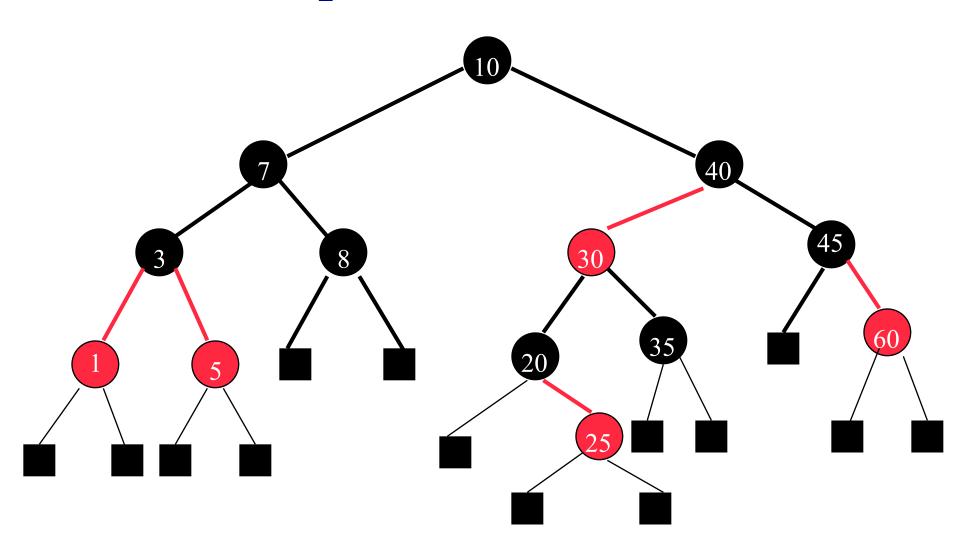
- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive red nodes.
- All root-to-external-node paths have the same number of black nodes

Red Black Trees

Colored Edges Definition

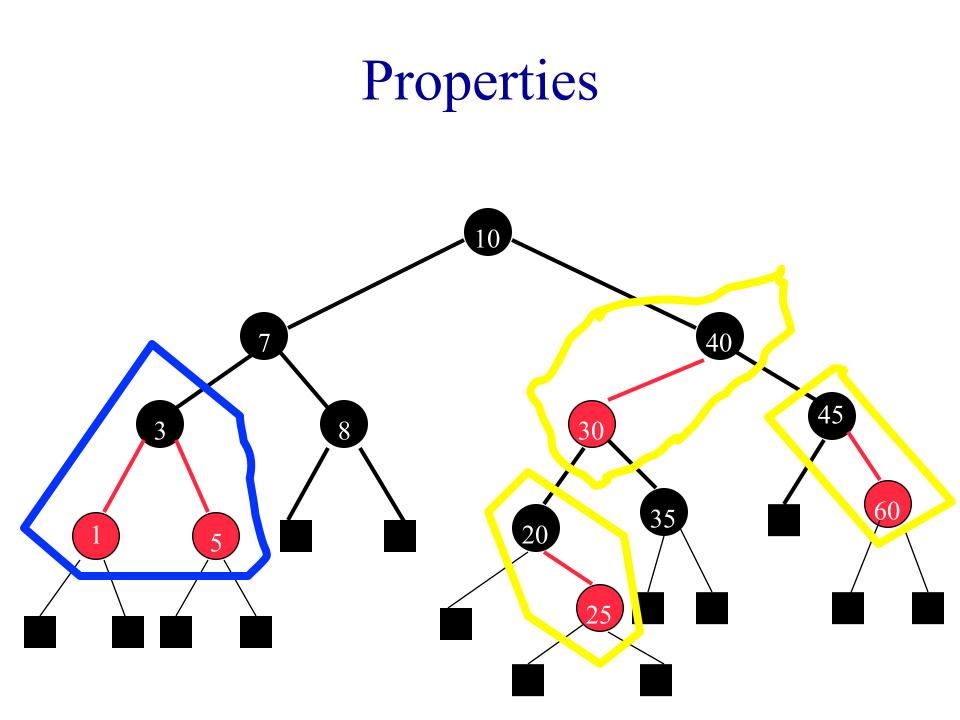
- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of black pointers.

Example Red-Black Tree



• The height of a red black tree that has n (internal) nodes is between $log_2(n+1)$ and $2log_2(n+1)$.

Start with a red black tree whose height is h; collapse all red nodes into their parent black nodes to get a tree whose node
-degrees are between 2 and 4, height is >= h/2, and all external nodes are at the same level.



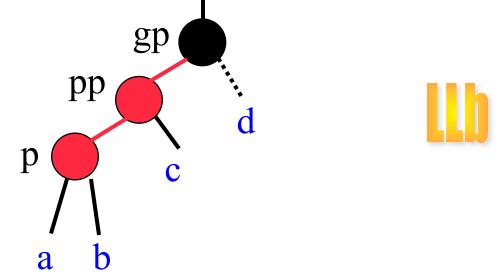
- Let h'>= h/2 be the height of the collapsed tree.
- Internal nodes of collapsed tree have degree between 2 and 4.
- Number of internal nodes in collapsed tree $>= 2^{h'}-1$.
- So, $n \ge 2^{h'-1}$
- So, $h \le 2 \log_2 (n+1)$

- O(1) amortized complexity to restructure following an insert/delete.
- C++ STL implementation
- java.util.TreeMap => red black tree

Insert

- New pair is placed in a new node, which is inserted into the red-black tree.
- New node color options.
 - Black node => one root-to-external-node path has an extra black node (black pointer).
 - Hard to remedy.
 - Red node => one root-to-external-node path may have two consecutive red nodes (pointers).
 - May be remedied by color flips and/or a rotation.

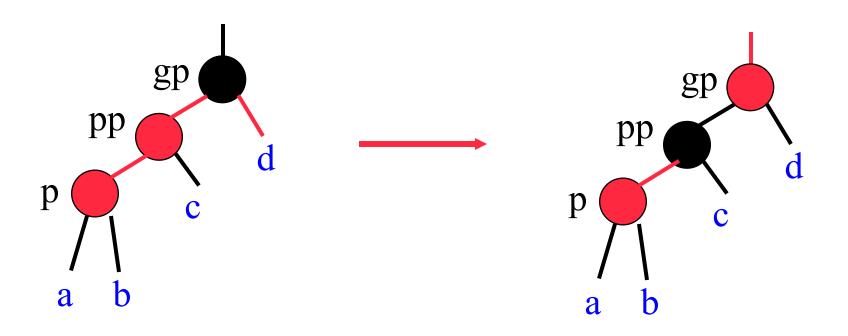
Classification Of 2 Red Nodes/Pointers



• XYz

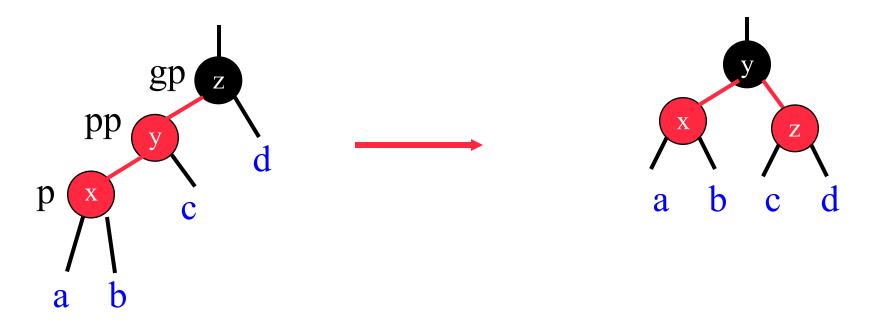
- X => relationship between gp and pp.
 - pp left child of $gp \Rightarrow X = L$.
- Y => relationship between pp and p.
 - p left child of $pp \Rightarrow Y = L$.
- z = b (black) if d = null or a black node.
- z = r (red) if d is a red node.

• Color flip.



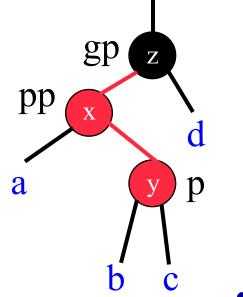
- Move p, pp, and gp up two levels.
- Continue rebalancing.

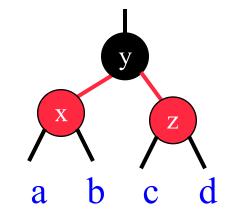
• Rotate.



- Done!
- Same as LL rotation of AVL tree.

• Rotate.





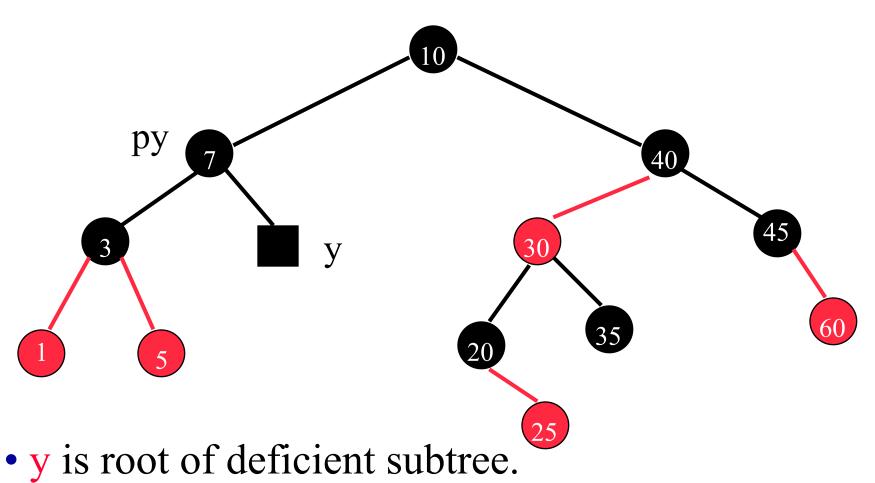
- Done!
- Same as LR rotation of AVL tree.
- RRb and RLb are symmetric.

Delete

- Delete as for unbalanced binary search tree.
- If red node deleted, no rebalancing needed.
- If black node deleted, a subtree becomes one black pointer (node) deficient.

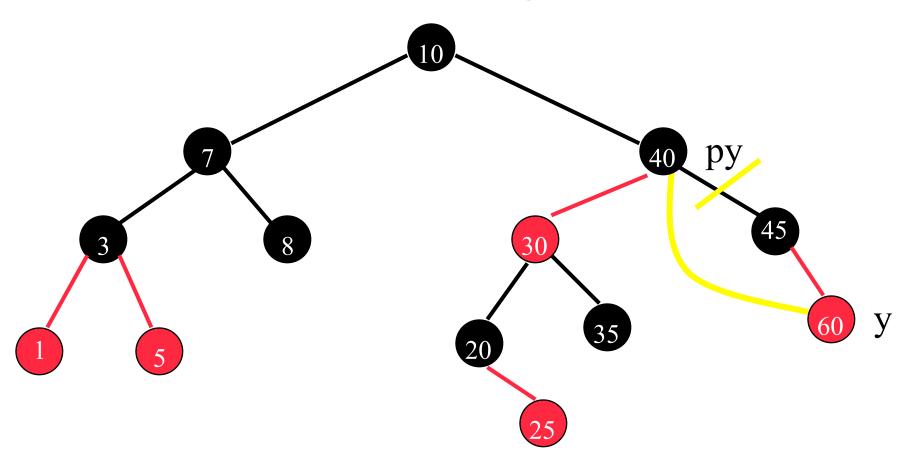
Delete A Black Leaf • Delete 8.

Delete A Black Leaf



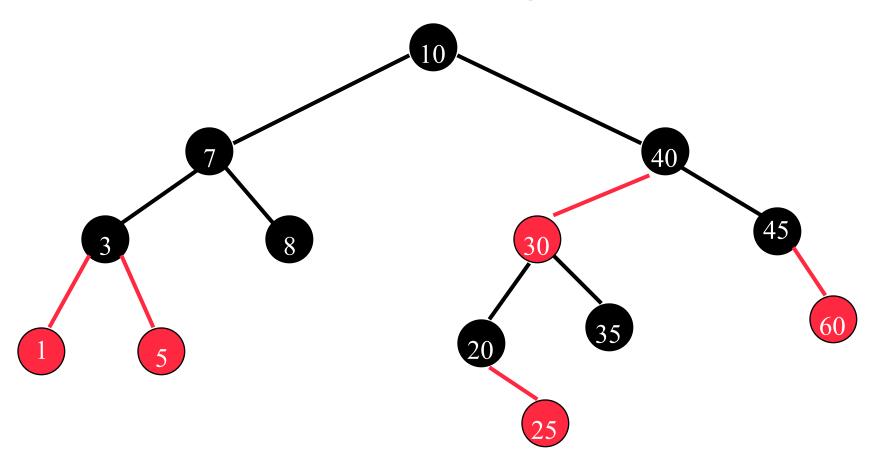
• py is parent of y.

Delete A Black Degree 1 Node



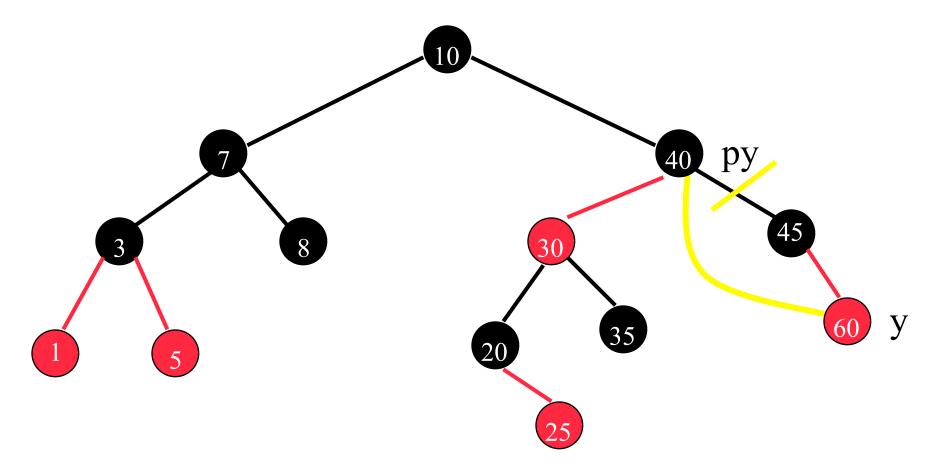
- Delete 45.
- y is root of deficient subtree.

Delete A Black Degree 2 Node

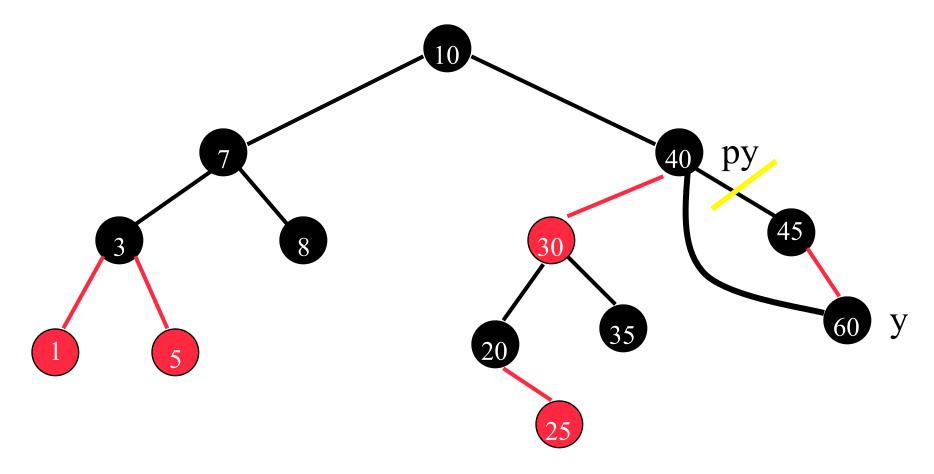


• Not possible, degree 2 nodes are never deleted.

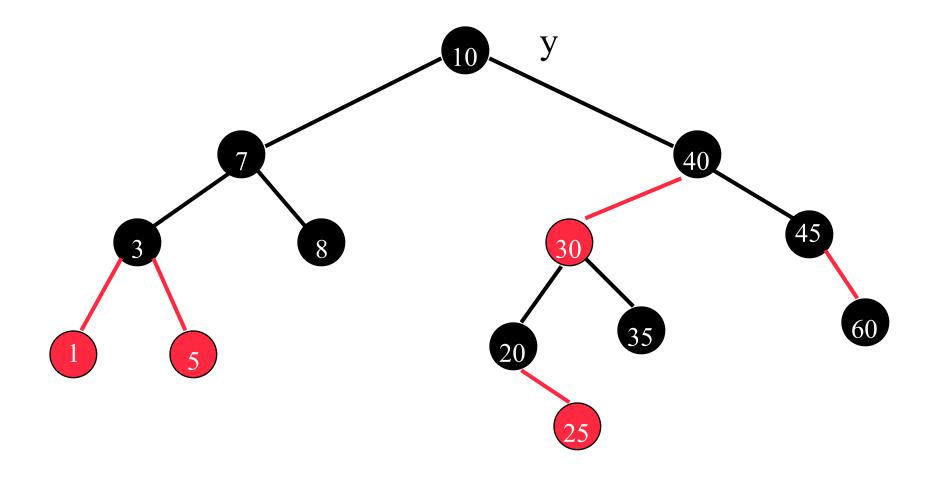
• If y is a red node, make it black.



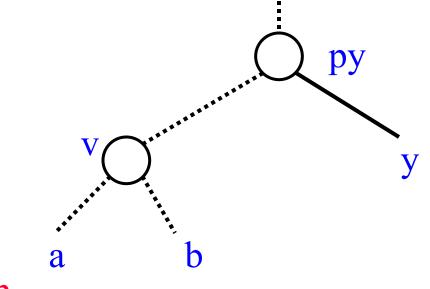
• Now, no subtree is deficient. Done!



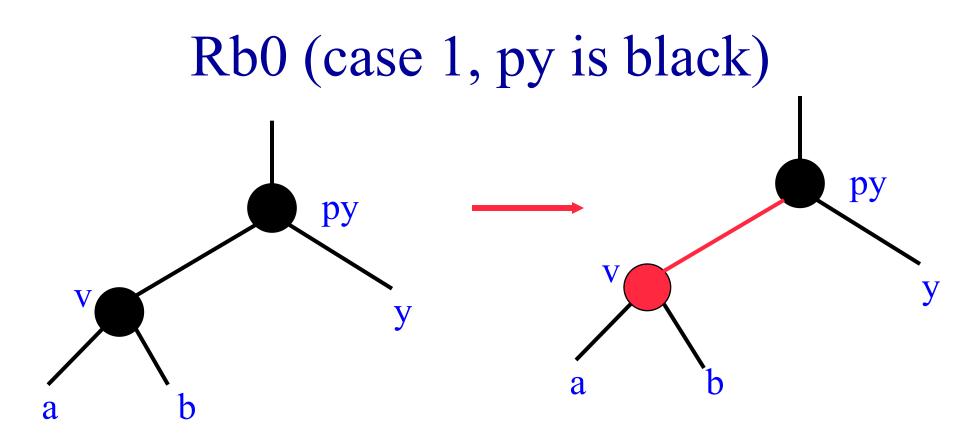
- y is a black root (there is no py).
- Entire tree is deficient. Done!



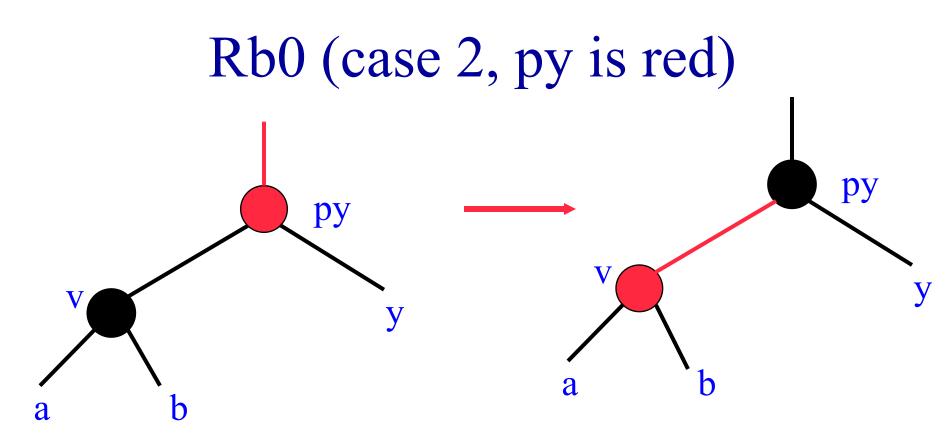
• y is black but not the root (there is a py).



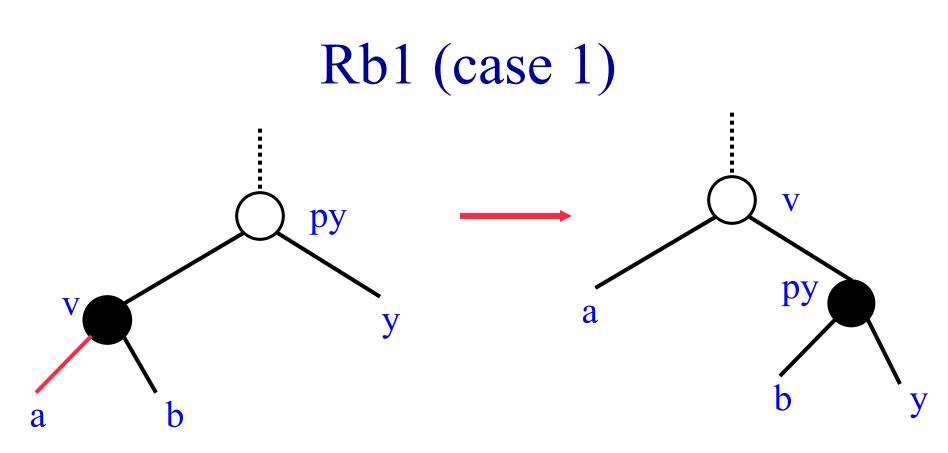
- Xcn
 - y is right child of $py \Rightarrow X = R$.
 - Pointer to v is black $\Rightarrow c = b$.
 - v has 1 red child $\Rightarrow n = 1$.



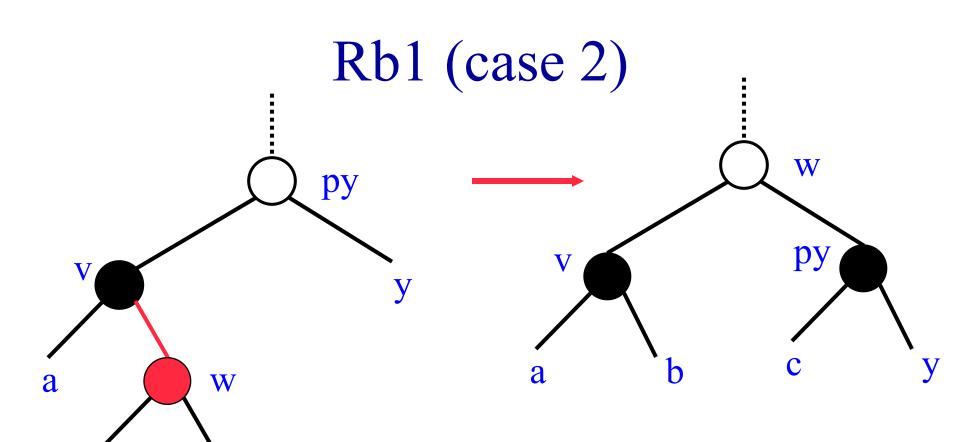
- Color change.
- Now, py is root of deficient subtree.
- Continue!



- Color change.
- Deficiency eliminated.
- Done!



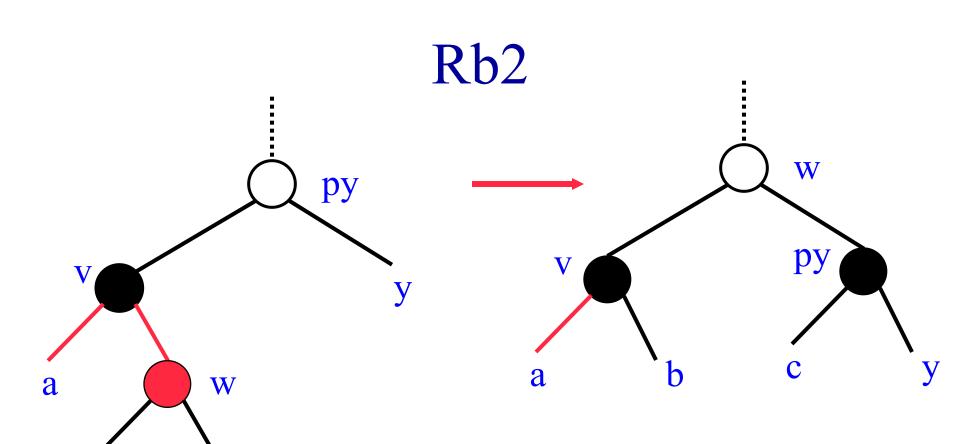
- LL rotation.
- Deficiency eliminated.
- Done!



- LR rotation.
- Deficiency eliminated.
- Done!

C

h



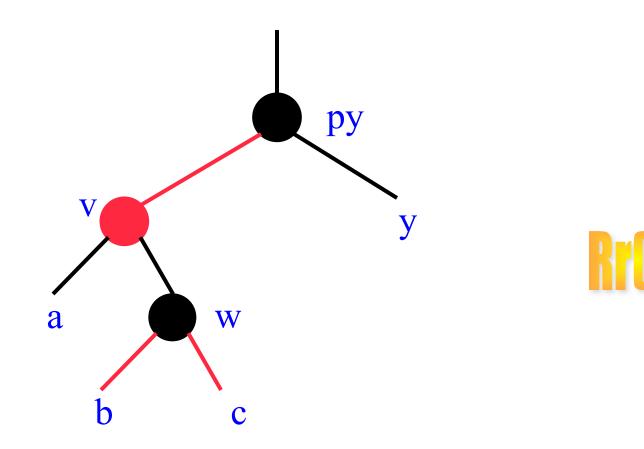
- LR rotation.
- Deficiency eliminated.
- Done!

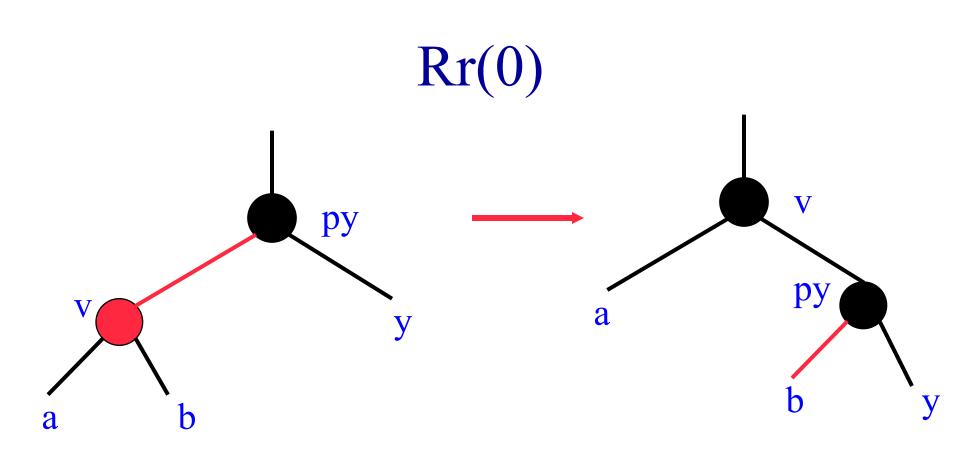
С

b

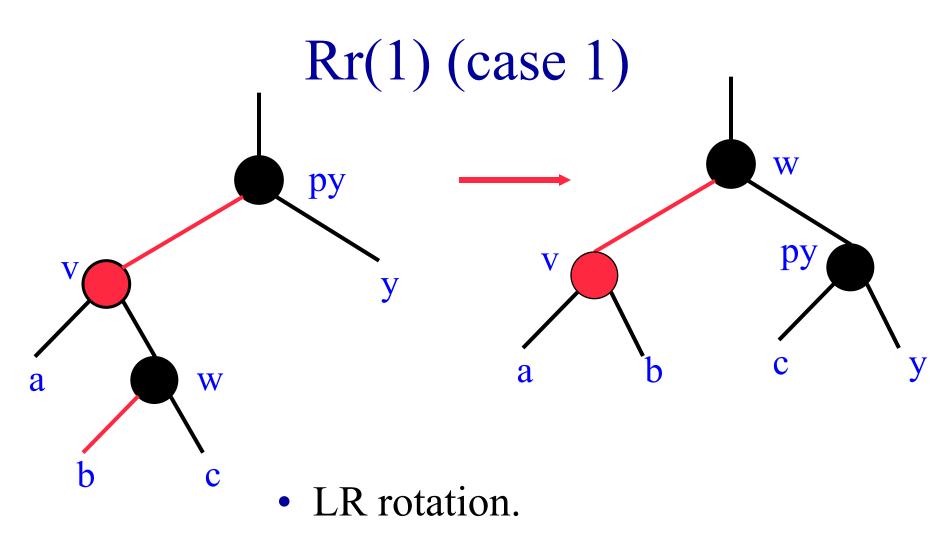
Rr(n)

• n = # of red children of v's right child w.

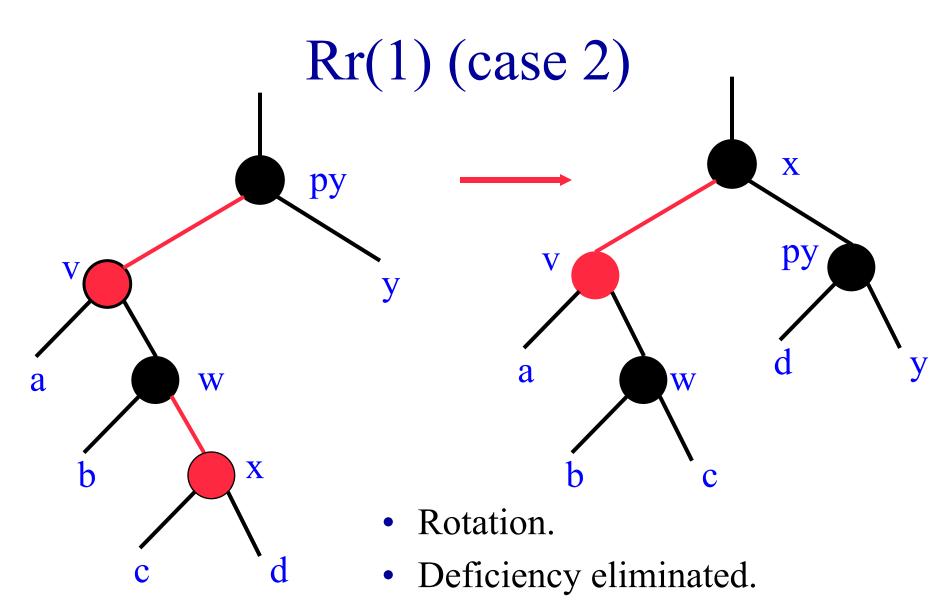




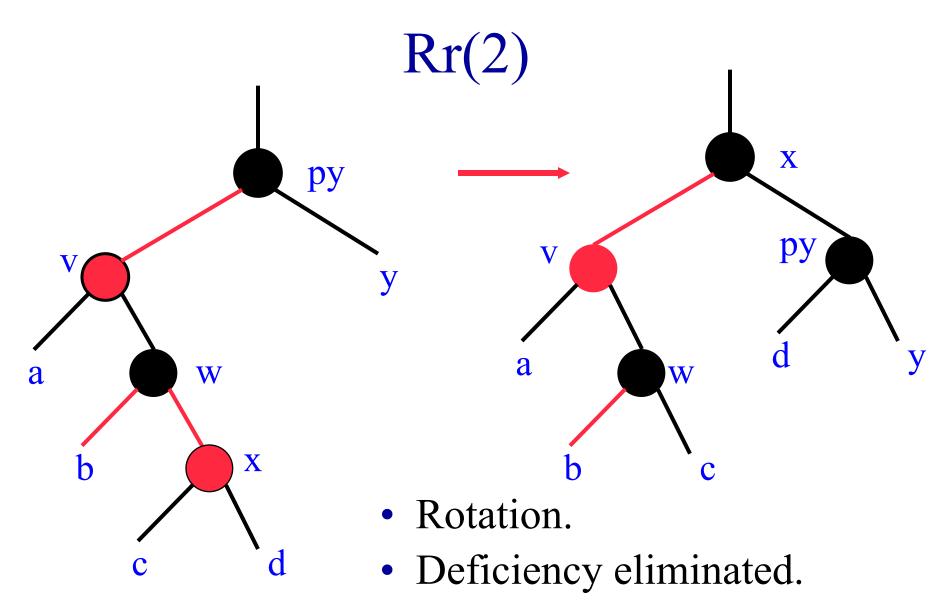
- LL rotation.
- Done!



- Deficiency eliminated.
- Done!



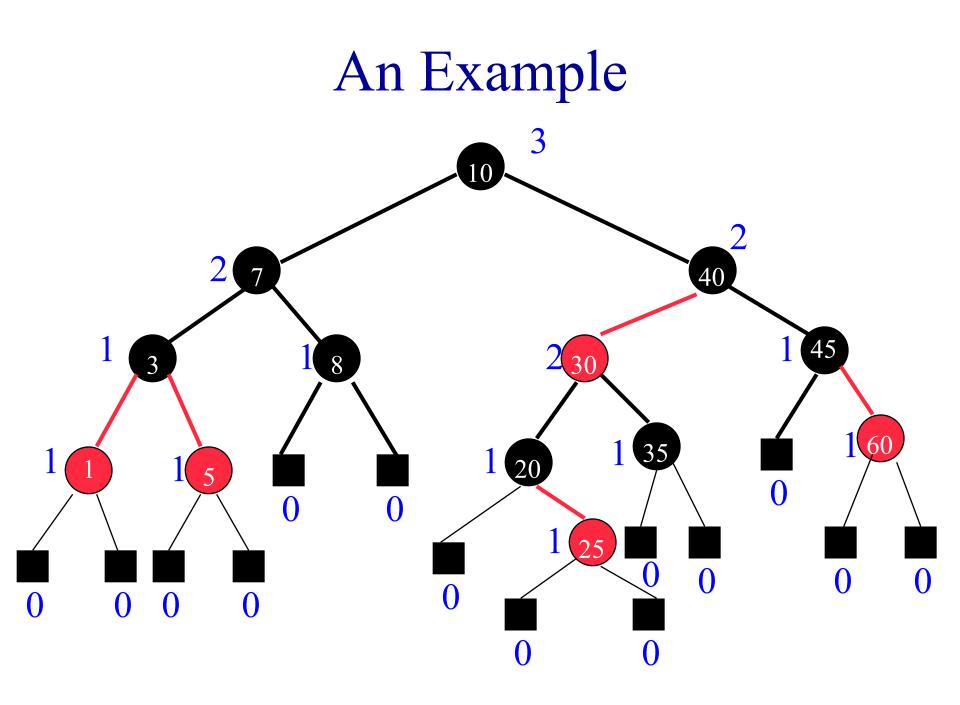
• Done!

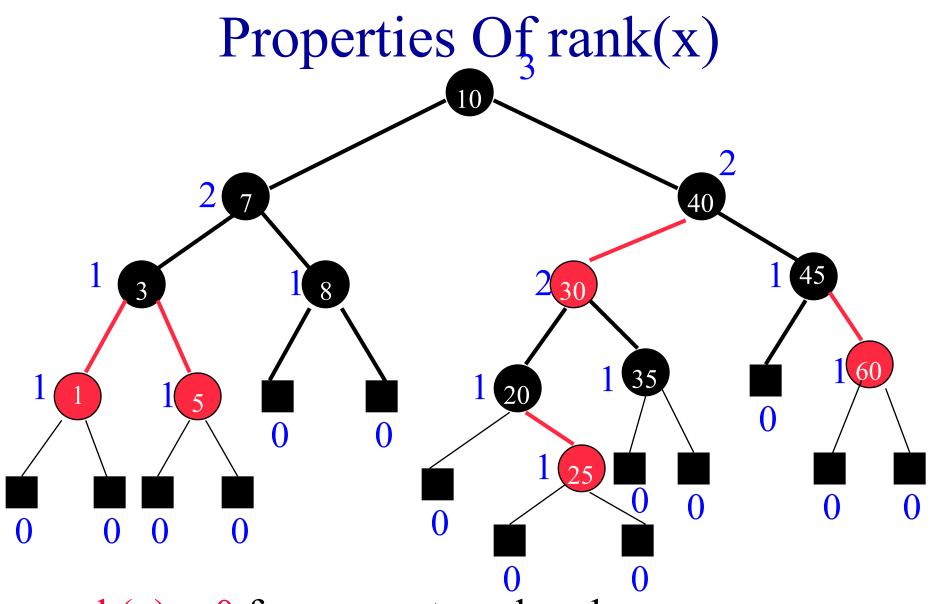


• Done!

Red-Black Trees—Rank

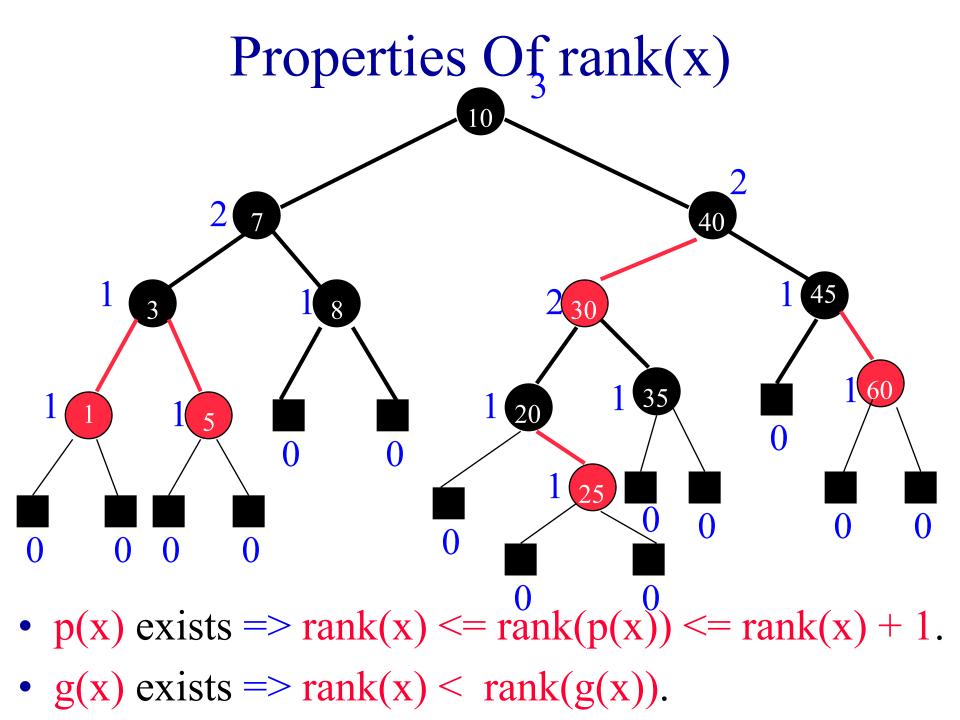
- rank(x) = # black pointers on path from x to an external node.
- Same as #black nodes (excluding x) from x to an external node.
- rank(external node) = 0.





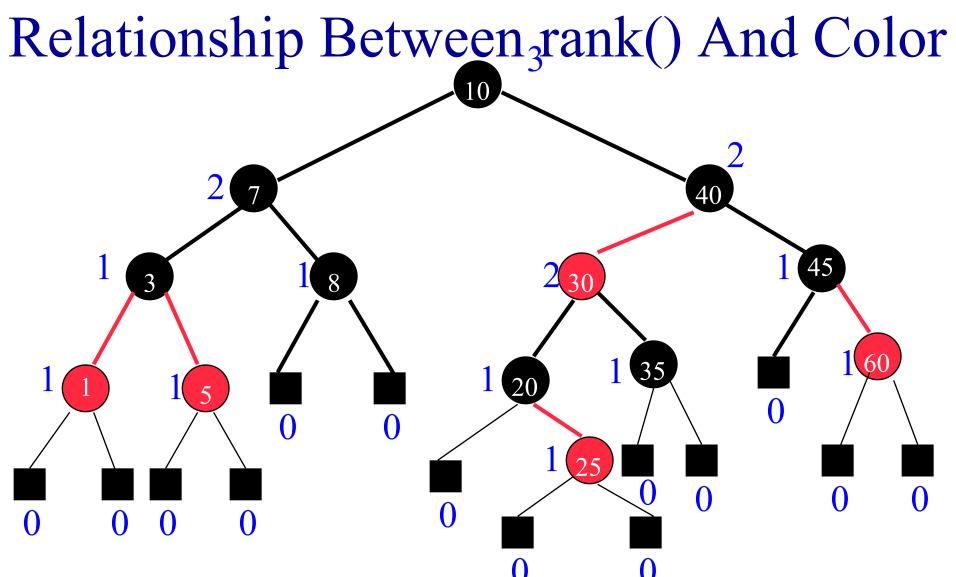
• rank(x) = 0 for x an external node.

• rank(x) = 1 for x parent of external node.



Red-Black Tree

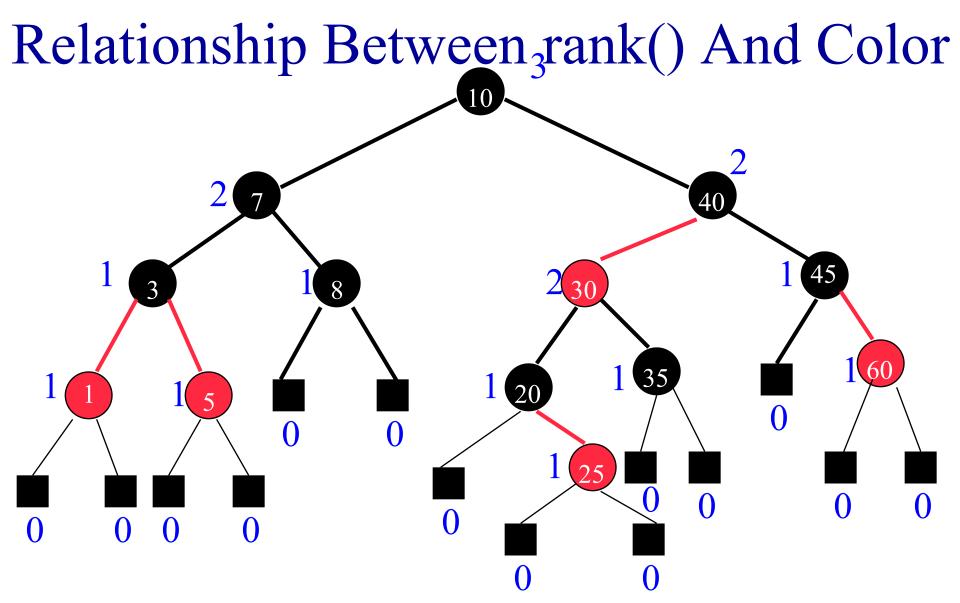
A binary search tree is a red-black tree iff integer ranks can be assigned to its nodes so as to satisfy the stated 4 properties of rank.



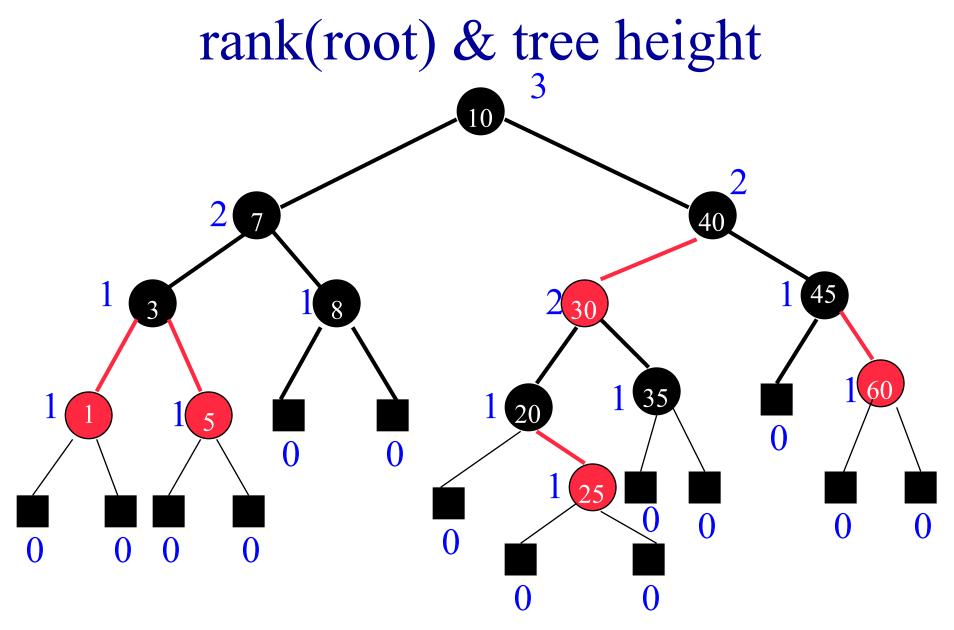
- (p(x),x) is a red pointer iff $\operatorname{rank}^{0}(x) \stackrel{0}{=} \operatorname{rank}(p(x))$.
- (p(x),x) is a black pointer iff rank(x) = rank(p(x)) 1.

Relationship Between rank() And Color

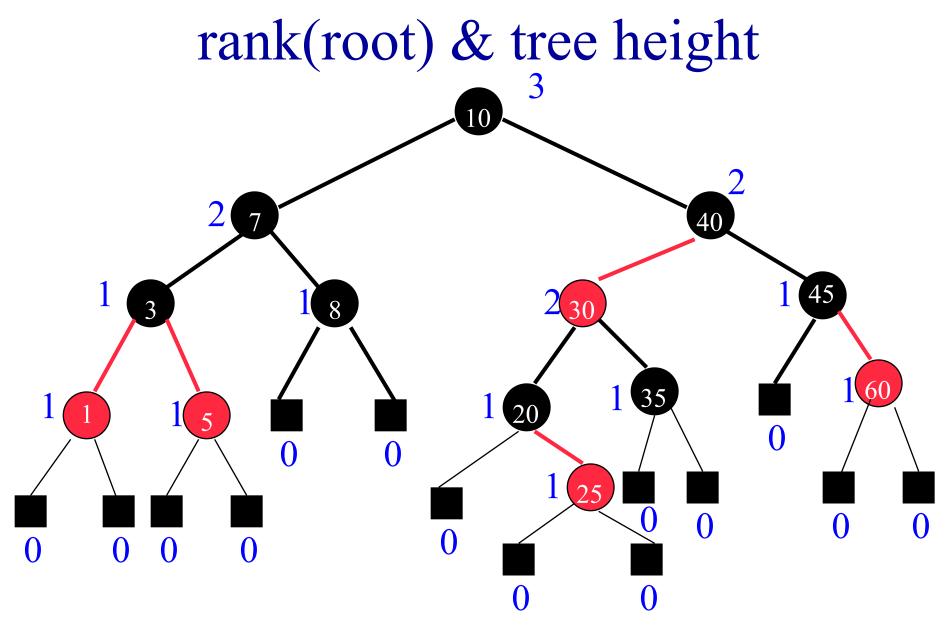
- Root is black.
- Other nodes:
 - Red iff pointer from parent is red.
 - Black iff pointer from parent is black.



• Given rank(root) and node/pointer colors, remaining ranks may be computed on way down.



• Height <= 2 * rank(root).



• No external nodes at levels 1, 2, ..., rank(root).

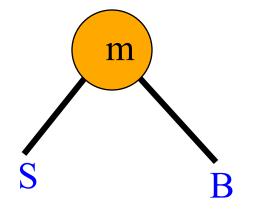
rank(root) & tree height

- No external nodes at levels 1, 2, ..., rank(root).
 - So, $\#\text{nodes} \ge \sum_{1 \le i \le \text{rank(root)}} 2^{i-1} = 2^{\operatorname{rank(root)}} 1.$
 - So, rank(root) $\leq \log_2(n+1)$.
- So, height(root) $\leq 2\log_2(n+1)$.

Join(S,m,B)

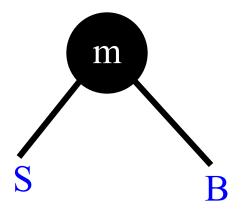
- Input
 - Dictionary S of pairs with small keys.
 - Dictionary **B** of pairs with big keys.
 - An additional pair m.
 - All keys in **S** are smaller than m.key.
 - All keys in **B** are bigger than m.key.
- Output
 - A dictionary that contains all pairs in S and B plus the pair m.
 - Dictionaries S and B may be destroyed.

Join Binary Search Trees



Join Red-black Trees

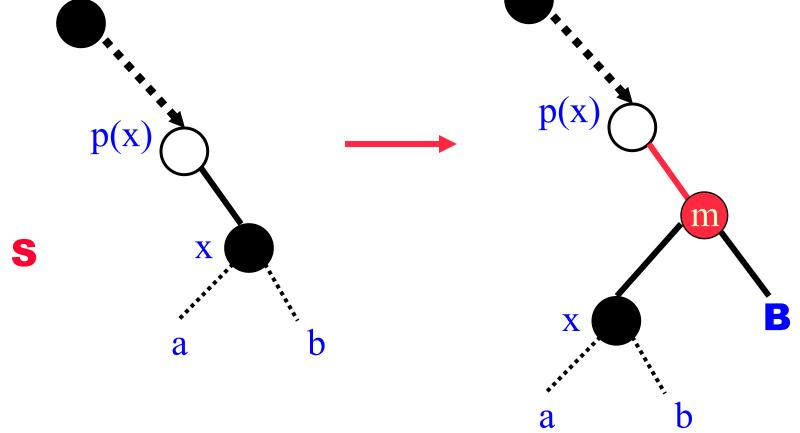
 When rank(S) = rank(B), use binary search tree method.



• rank(root) = rank(S) + 1 = rank(B) + 1.

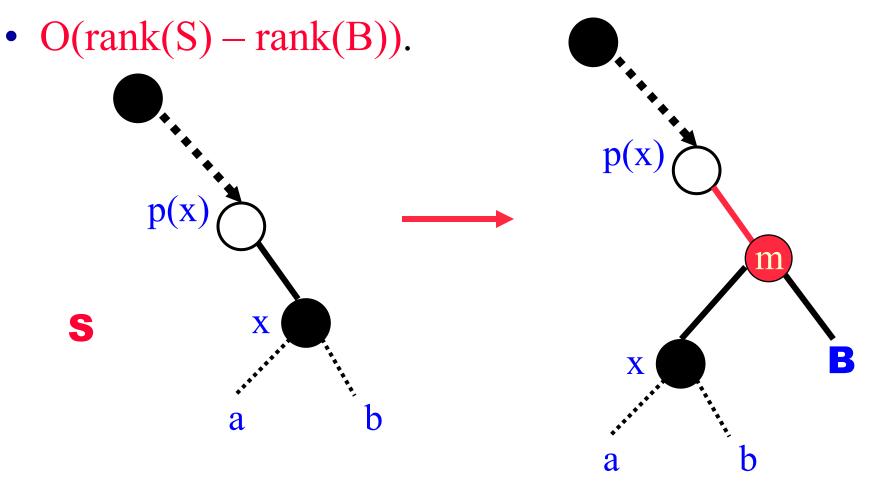
rank(S) > rank(B)

 Follow right child pointers from root of S to first node x whose rank equals rank(B).



rank(S) > rank(B)

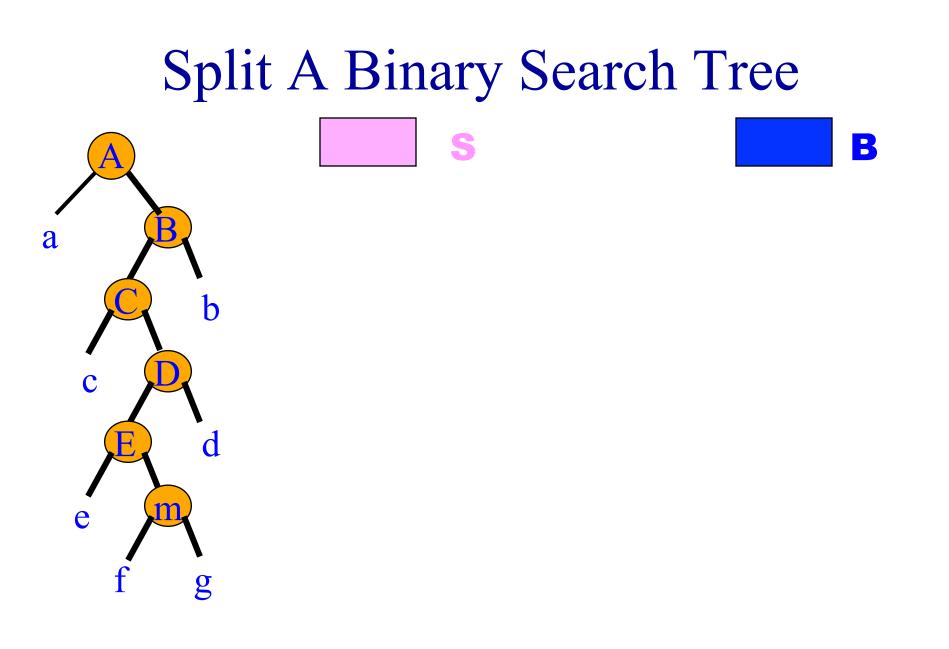
• If there are now 2 consecutive red pointers/nodes, perform bottom-up rebalancing beginning at m.

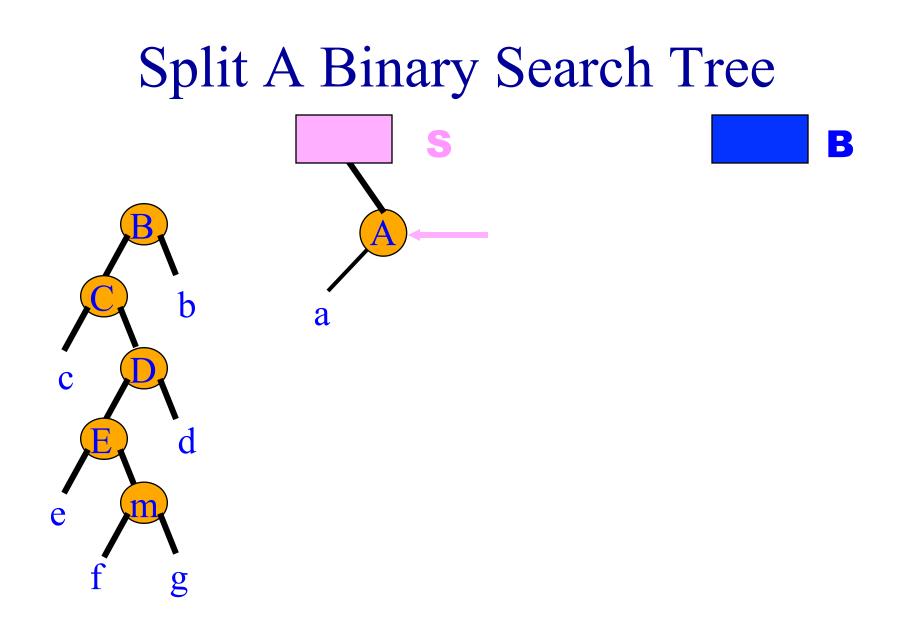


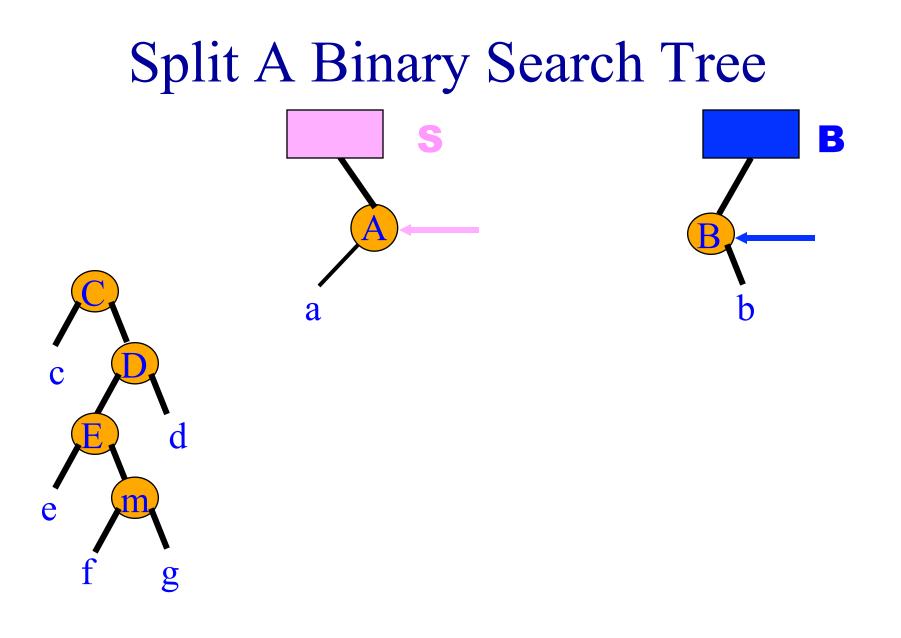
- Follow left child pointers from root of **B** to first node **x** whose rank equals rank(S).
- Similar to case when rank(S) > rank(B).

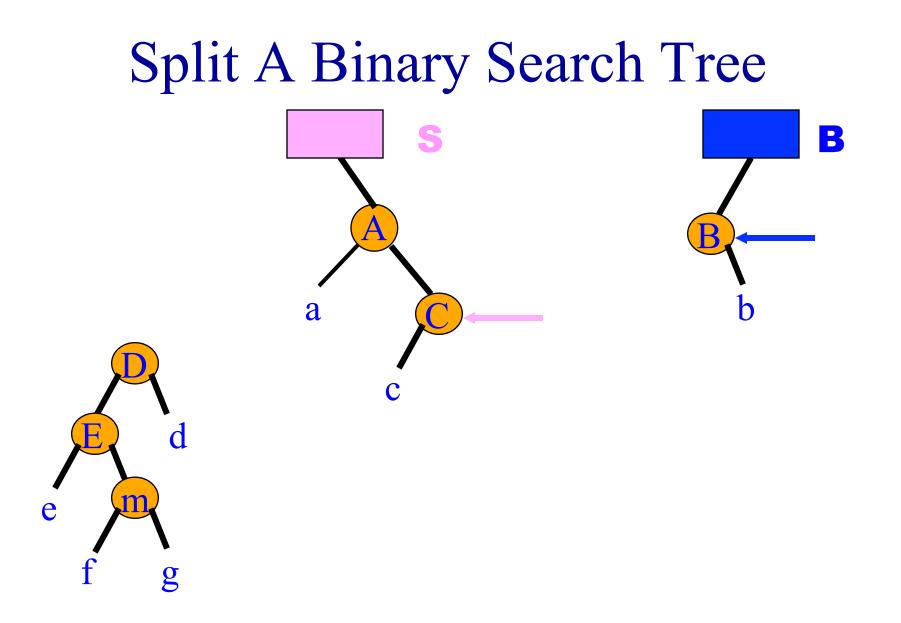
Split(k)

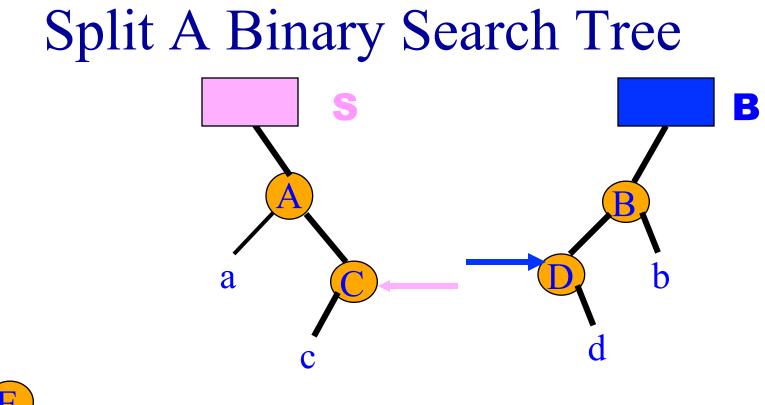
- Inverse of join.
- Obtain
 - S ... dictionary of pairs with key < k.
 - B ... dictionary of pairs with key > k.
 - $m \dots pair with key = k$ (if present).

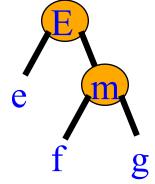


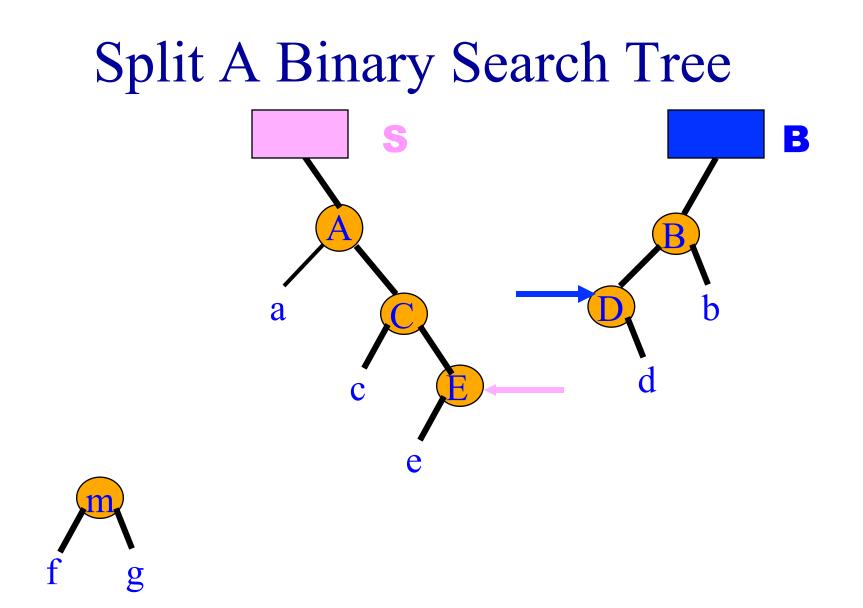


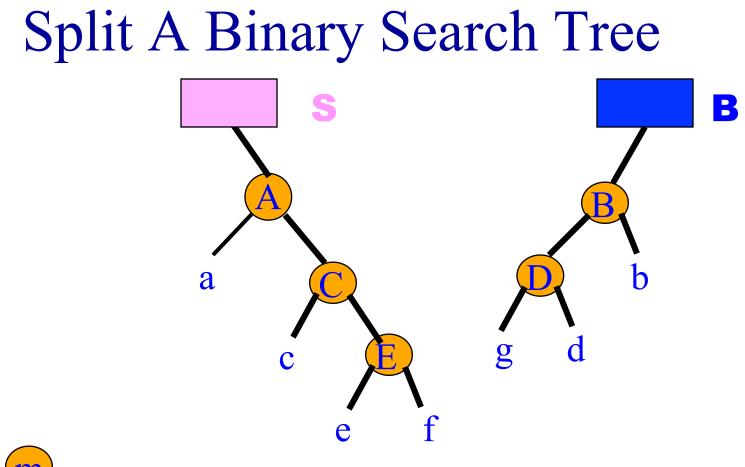




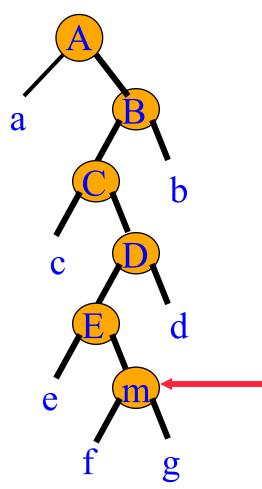




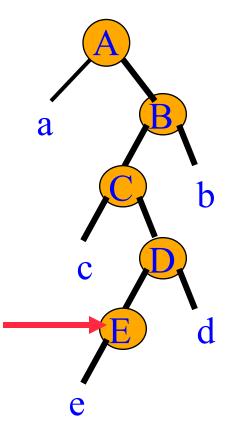


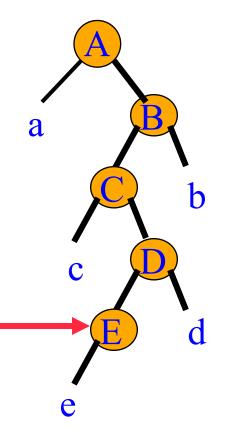


- Previous strategy does not split a red-black tree into two red-black trees.
- Must do a search for m followed by a traceback to the root.
- During the traceback use the join operation to construct S and B.



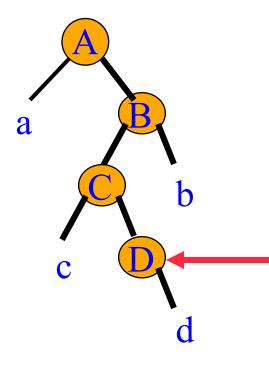
S = f B = g





 $S = f \qquad B = g$

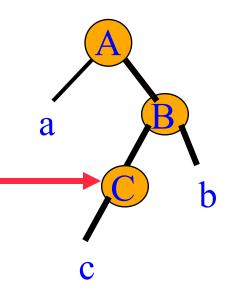
S = join(e, E, **S**)



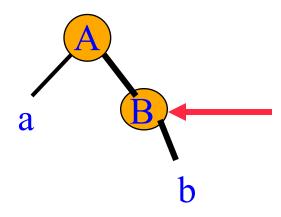
 $S = f \qquad B = g$

S = join(e, E, **S**)

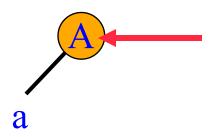
B = join(**B**, D, d)



- $S = f \qquad B = g$
 - **S** = join(e, E, **S**)
 - $\mathbf{B} = join(\mathbf{B}, D, d)$
 - **S** = join(c, C, **S**)



- $S = f \qquad B = g$
 - **S** = join(e, E, **S**)
 - **B** = join(**B**, D, d) **S** = join(c, C, **S**)
 - $\mathbf{B} = join(\mathbf{B}, \mathbf{B}, \mathbf{b})$



 $S = f \qquad B = g$

S = join(e, E, **S**)

 $\mathbf{B} = join(\mathbf{B}, \mathbf{D}, \mathbf{d})$

S = join(c, C, **S**)

B = join(**B**, B, b)

S = join(a, A, **S**)