
Fibonacci Heaps

 Actual Amortized
Insert O(1) O(1)

Remove min (or max) O(n) O(log n)

Meld O(1) O(1)

Remove O(n) O(log n)

Decrease key (or
increase)

O(n) O(1)

Analysis

• FibonacciAnalysis.ppt
• Video

§ www.cise.ufl.edu/~sahni/cop5536; Internet
Lectures; not registered

§ COP5536_FHA.rm

Single Source All Destinations
Shortest Paths

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

Greedy Single Source All Destinations

• Known as Dijkstra’s algorithm.
• Let d(i) be the length of a shortest one edge

extension of an already generated shortest path,
the one edge extension ends at vertex i.

• The next shortest path is to an as yet unreached
vertex for which the d() value is least.

• After the next shortest path is generated, some
d() values are updated (decreased).

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

Path Length
1 0
1 3 2

1 3 55

1 2 6

1 3 95 4

1 3 106

1 3 116 7

Operations On d()
• Remove min.

§ Done O(n) times, where n is the number of vertices in
the graph.

• Decrease d().
§ Done O(e) times, where e is the number of edges in

the graph.
• Array.

§ O(n2) overall complexity.
• Min heap.

§ O(nlog n + elog n) overall complexity.
• Fibonacci heap.

§ O(nlog n + e) overall complexity.

Prim’s Min-Cost Spanning Tree
Algorithm

• Array.
§ O(n2) overall complexity.

• Min heap.
§ O(nlog n + elog n) overall complexity.

• Fibonacci heap.
§ O(nlog n + e) overall complexity.

Min Fibonacci Heap

• Collection of min trees.
• The min trees need not be Binomial trees.

Node Structure
• Degree, Child, Data
• Left and Right Sibling

§ Used for circular doubly linked list of siblings.
• Parent

§ Pointer to parent node.
• ChildCut

§ True if node has lost a child since it became a child
of its current parent.

§ Set to false by remove min, which is the only
operation that makes one node a child of another.

§ Undefined for a root node.

Fibonacci Heap Representation

• Degree, Parent and ChildCut fields not shown.

6

4

9

5
8

7 3

1

9

5

6

5 9

2

8

6 7

4

A

Remove(theNode)

• theNode points to the Fibonacci heap node
that contains the element that is to be
removed.

• theNode points to min element => do a
remove min.
§ In this case, complexity is the same as that for

remove min.

Remove(theNode)

• theNode points to an element other than the min
element.
§ Remove theNode from its doubly linked sibling list.
§ Change parent’s child pointer if necessary.
§ Set parent field of theNode’s children to null.
§ Combine top-level list and children list of theNode; do not

pairwise combine equal degree trees.
§ Free theNode.

• In this case, actual complexity is O(log n) (assuming
theNode has O(log n) children).

Remove(theNode)

Remove theNode from its doubly linked sibling list.

8

7 3

1

6

5 9

2

8

6 7

4 10

4

9

5

theNode

6

9

5

Remove(theNode)

Combine top-level list and children of theNode setting
parent pointers of the children of theNode to null.

8

7 3

1

6

5 9

2

8

6 7

4

10

4

9

5

6

9

5

Remove(theNode)

8

7 3

1

6

5 9

2

8

6 7

4

10

9

5 6

9

5

DecreaseKey(theNode, theAmount)

If theNode is not a root and new key < parent
key, remove subtree rooted at theNode from its
doubly linked sibling list.

Insert into top-level list.

8

7 3

1

6

5 9

2

8

6 7

4 10

4

9

5

theNode

6

9

5

DecreaseKey(theNode, theAmount)

10

0

9

5

8

7 3

1

6

5 9

2

8

6 7

4

6

9

5

Update heap pointer if necessary

Cascading Cut

• When theNode is cut out of its sibling list in a
remove or decrease key operation, follow path
from parent of theNode to the root.

• Encountered nodes (other than root) with
ChildCut = true are cut from their sibling lists
and inserted into top-level list.

• Stop at first node with ChildCut = false.
• For this node, set ChildCut = true.

Cascading Cut Example

8

7 3

1

6

5 9

2

8

6 7

4

9

9 8

theNode

T

T

F

Decrease key by 2.

Cascading Cut Example

8

7 3

1

6

5 9

2

6 7

4

6

9

9 8

T

T

F

Cascading Cut Example

8

7 3

1

6

5 9

2

6

7

4

6

9

9 8

T

F

Cascading Cut Example

8

7 3

1

6

5 9

2 6

7 46

9

9 8F

Cascading Cut Example

8

7 3

1

6

5 9

2 6

7 46

9

9 8T

Actual complexity of cascading cut is O(h) = O(n).

