
B-Trees

• Large degree B-trees used to represent very 
large dictionaries that reside on disk.

• Smaller degree B-trees used for internal-
memory dictionaries to overcome cache-miss 
penalties.
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AVL Trees

• n = 230 = 109 (approx).
• 30 <= height <= 43.
• When the AVL tree resides on a disk, up to 

43 disk access are made for a search.
• This takes up to (approx) 4 seconds.
• Not acceptable.



Red-Black Trees

• n = 230 = 109 (approx).
• 30 <= height <= 60.
• When the red-black tree resides on a disk, 

up to 60 disk access are made for a search.
• This takes up to (approx) 6 seconds.
• Not acceptable.
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m-way Search Trees

• Each node has up to m – 1 pairs and m children. 
• m = 2 => binary search tree.



4-Way Search Tree

10              30              35
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Maximum # Of Pairs

• Happens when all internal nodes are m-nodes.
• Full degree m tree.
• # of nodes = 1 + m + m2 + m3 + … + mh-1

= (mh – 1)/(m – 1).
• Each node has m – 1 pairs.
• So, # of pairs = mh – 1.



Capacity Of m-Way Search Tree

 m = 2 m = 200 
h = 3    7 8 * 106 - 1 

h = 5   31 3.2 * 1011 - 1 

h = 7 127 1.28 * 1016 - 1 
 

 



Definition Of B-Tree
• Definition assumes external nodes 

(extended m-way search tree).
• B-tree of order m.

§ m-way search tree.
§ Not empty => root has at least 2 children.
§ Remaining internal nodes (if any) have at least 

ceil(m/2) children.
§ External (or failure) nodes on same level.



2-3 And 2-3-4 Trees
• B-tree of order m.

§ m-way search tree.
§ Not empty => root has at least 2 children.
§ Remaining internal nodes (if any) have at least 

ceil(m/2) children.
§ External (or failure) nodes on same level.

• 2-3 tree is B-tree of order 3. 
• 2-3-4 tree is B-tree of order 4.



B-Trees Of Order 5 And 2
• B-tree of order m.

§ m-way search tree.
§ Not empty => root has at least 2 children.
§ Remaining internal nodes (if any) have at least 

ceil(m/2) children.
§ External (or failure) nodes on same level.

• B-tree of order 5 is 3-4-5 tree (root may be
2-node though).

• B-tree of order 2 is full binary tree.



Minimum # Of Pairs
• n = # of pairs.
• # of external nodes = n + 1.
• Height = h => external nodes on level h + 1.

1 1
2 >= 2
3 >= 2*ceil(m/2)

h + 1 >= 2*ceil(m/2)h-1

n + 1 >= 2*ceil(m/2)h-1, h >= 1

level # of nodes



Minimum # Of Pairs

• m = 200.

n + 1 >= 2*ceil(m/2)h-1, h >= 1

height # of pairs

2 >= 199
3 >= 19,999
4 >= 2 * 106 – 1
5 >= 2 * 108 – 1

h <= log ceil(m/2) [(n+1)/2] + 1



Choice Of m

• Worst-case search time.
§ (time to fetch a node + time to search node) * height

m

search 
time

50 400



• convention：
§ Root of the B-tree is always in main memory.
§ Any nodes that are passed as parameters must 

already have  had a DISK_READ operation 
performed on them.

• Operations：
§ Searching a B-Tree.
§ Creating an empty B-tree.
§ Splitting a node in a B-tree.
§ Inserting a key into a B-tree.
§ Deleting a key from a B-tree.



Node Structure

• ci is a pointer to a subtree.
• ki is a dictionary pair(KEY).

n c0 k1 c1 k2 c2 … kn cn



Search
BT_Search(x, k)

i← 0
while  i < n  and  k > ki+1[x]
           do   i← i+1
if     i < n  and  k = ki+1[x]
       then return(x,i+1)
if     leaf [x]  then return NULL
                     else  DISK-READ(Ci[x])
                             return B-Tree-Search(Ci[x],k)



• B-Tree-Created(T)：
§ Algorithm：

§ time：

B-Tree-Create(T)
{

xroot[T]
WRITE(x)-DISK
0n[x]
TRUE][Leaf

()NodeAllocate

¬

¬
¬

-¬
x

x

}

)(1O



Insert
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Insertion into a full leaf triggers bottom-up node 
splitting pass.

16   17

Insert 10?

Insert 18?



Split An Overfull Node

• ci is a pointer to a subtree.
• ki is a dictionary pair(KEY).

m c0 k1 c1 k2 c2 … km cm

ceil(m/2)-1 c0 k1 c1 k2 c2 … kceil(m/2)-1 cceil(m/2)-1

m-ceil(m/2) cceil(m/2) kceil(m/2)+1 cceil(m/2)+1 … km cm

• kceil(m/2) plus pointer to new node is inserted in 
parent. 



Insert
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• Insert a pair with key = 2.

• New pair goes into a 3-node.

16   17



Insert Into A Leaf 3-node
• Insert new pair so that the 3 keys are in 

ascending order.

• Split overflowed node around middle key.

1 2 3

• Insert middle key and pointer to new node 
into parent.

1 3

2



Insert
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• Insert a pair with key = 2.

16   17



Insert
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• Insert a pair with key = 2 plus a pointer into parent.



Insert

• Now, insert a pair with key = 18.
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Insert Into A Leaf 3-node
• Insert new pair so that the 3 keys are in 

ascending order.

• Split the overflowed node.

16 17 18

• Insert middle key and pointer to new node 
into parent.

1816

17



Insert

• Insert a pair with key = 18.
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Insert

• Insert a pair with key = 17 plus a pointer into parent.
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Insert

• Insert a pair with key = 17 plus a pointer into parent.
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Insert

• Now, insert a pair with key = 7.
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Insert

• Insert a pair with key = 6 plus a pointer into parent.
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Insert

• Insert a pair with key = 4 plus a pointer into parent.
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Insert

• Insert a pair with key = 8 plus a pointer into parent.

• There is no parent. So, create a new root.
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Insert

• Height increases by 1.

30   401 93 16

15

18

2062

5 7

4 17

8



• Btree::InsertNode(Key k, Element e)
{

bool overflow = Insert(root, k, e);
if (overflow) 

<Key, Node*> newpair= split(root);
root = new Node(root, newpair);

return;
}



• Bool Insert(node* x, Key k, Element e)
{

if (leaf(x)) 
insertLeaf(x, k, e);
if (size(x) > m-1) return true;
else return false;

idx = keySearch(x, k); 
bool overflow = Insert(x->C[idx], k, e);



if (overflow)
<Key, Node*> newpair = split(x->C[idx]);
InsertPair(x, newpair);
if(size(x) > m-1)

return true;
else return false;

}



• Exercises: P609-3


