
B-Trees

• Large degree B-trees used to represent very
large dictionaries that reside on disk.

• Smaller degree B-trees used for internal-
memory dictionaries to overcome cache-miss
penalties.

Main
Memory

Secondary
Memory

(disks)(RAM)

object some pointer to a ¬x

READ(x)-DISK

WRITE(x)-DISK
x of fields modify theand/or access that operations

x of fields modify thenot dobut access that operations others

B-Trees

AVL Trees

• n = 230 = 109 (approx).
• 30 <= height <= 43.
• When the AVL tree resides on a disk, up to

43 disk access are made for a search.
• This takes up to (approx) 4 seconds.
• Not acceptable.

Red-Black Trees

• n = 230 = 109 (approx).
• 30 <= height <= 60.
• When the red-black tree resides on a disk,

up to 60 disk access are made for a search.
• This takes up to (approx) 6 seconds.
• Not acceptable.

A Disk Page

an AVL node

Useless content

A Search Tree Node

m-way Search Trees

• Each node has up to m – 1 pairs and m children.
• m = 2 => binary search tree.

4-Way Search Tree

10 30 35

k < 10 10 < k < 30 30 < k < 35 k > 35

Maximum # Of Pairs

• Happens when all internal nodes are m-nodes.
• Full degree m tree.
• # of nodes = 1 + m + m2 + m3 + … + mh-1

= (mh – 1)/(m – 1).
• Each node has m – 1 pairs.
• So, # of pairs = mh – 1.

Capacity Of m-Way Search Tree

 m = 2 m = 200
h = 3 7 8 * 106 - 1

h = 5 31 3.2 * 1011 - 1

h = 7 127 1.28 * 1016 - 1

Definition Of B-Tree
• Definition assumes external nodes

(extended m-way search tree).
• B-tree of order m.

§ m-way search tree.
§ Not empty => root has at least 2 children.
§ Remaining internal nodes (if any) have at least

ceil(m/2) children.
§ External (or failure) nodes on same level.

2-3 And 2-3-4 Trees
• B-tree of order m.

§ m-way search tree.
§ Not empty => root has at least 2 children.
§ Remaining internal nodes (if any) have at least

ceil(m/2) children.
§ External (or failure) nodes on same level.

• 2-3 tree is B-tree of order 3.
• 2-3-4 tree is B-tree of order 4.

B-Trees Of Order 5 And 2
• B-tree of order m.

§ m-way search tree.
§ Not empty => root has at least 2 children.
§ Remaining internal nodes (if any) have at least

ceil(m/2) children.
§ External (or failure) nodes on same level.

• B-tree of order 5 is 3-4-5 tree (root may be
2-node though).

• B-tree of order 2 is full binary tree.

Minimum # Of Pairs
• n = # of pairs.
• # of external nodes = n + 1.
• Height = h => external nodes on level h + 1.

1 1
2 >= 2
3 >= 2*ceil(m/2)

h + 1 >= 2*ceil(m/2)h-1

n + 1 >= 2*ceil(m/2)h-1, h >= 1

level # of nodes

Minimum # Of Pairs

• m = 200.

n + 1 >= 2*ceil(m/2)h-1, h >= 1

height # of pairs

2 >= 199
3 >= 19,999
4 >= 2 * 106 – 1
5 >= 2 * 108 – 1

h <= log ceil(m/2) [(n+1)/2] + 1

Choice Of m

• Worst-case search time.
§ (time to fetch a node + time to search node) * height

m

search
time

50 400

• convention：
§ Root of the B-tree is always in main memory.
§ Any nodes that are passed as parameters must

already have had a DISK_READ operation
performed on them.

• Operations：
§ Searching a B-Tree.
§ Creating an empty B-tree.
§ Splitting a node in a B-tree.
§ Inserting a key into a B-tree.
§ Deleting a key from a B-tree.

Node Structure

• ci is a pointer to a subtree.
• ki is a dictionary pair(KEY).

n c0 k1 c1 k2 c2 … kn cn

Search
BT_Search(x, k)

i← 0
while i < n and k > ki+1[x]
 do i← i+1
if i < n and k = ki+1[x]
 then return(x,i+1)
if leaf [x] then return NULL
 else DISK-READ(Ci[x])
 return B-Tree-Search(Ci[x],k)

• B-Tree-Created(T)：
§ Algorithm：

§ time：

B-Tree-Create(T)
{

xroot[T]
WRITE(x)-DISK
0n[x]
TRUE][Leaf

()NodeAllocate

¬

¬
¬

-¬
x

x

}

)(1O

Insert

15 20

8

4

1 3 5 6 30 409

Insertion into a full leaf triggers bottom-up node
splitting pass.

16 17

Insert 10?

Insert 18?

Split An Overfull Node

• ci is a pointer to a subtree.
• ki is a dictionary pair(KEY).

m c0 k1 c1 k2 c2 … km cm

ceil(m/2)-1 c0 k1 c1 k2 c2 … kceil(m/2)-1 cceil(m/2)-1

m-ceil(m/2) cceil(m/2) kceil(m/2)+1 cceil(m/2)+1 … km cm

• kceil(m/2) plus pointer to new node is inserted in
parent.

Insert

15 20

8

4

1 3 5 6 30 409

• Insert a pair with key = 2.

• New pair goes into a 3-node.

16 17

Insert Into A Leaf 3-node
• Insert new pair so that the 3 keys are in

ascending order.

• Split overflowed node around middle key.

1 2 3

• Insert middle key and pointer to new node
into parent.

1 3

2

Insert

15 20

8

4

1 3 5 6 30 409

• Insert a pair with key = 2.

16 17

Insert

15 20

8

4

5 6 30 409 16 17
3

1

2

• Insert a pair with key = 2 plus a pointer into parent.

Insert

• Now, insert a pair with key = 18.

15 20

8

1

2 4

5 6 30 409 16 173

Insert Into A Leaf 3-node
• Insert new pair so that the 3 keys are in

ascending order.

• Split the overflowed node.

16 17 18

• Insert middle key and pointer to new node
into parent.

1816

17

Insert

• Insert a pair with key = 18.

15 20

8

1

2 4

5 6 30 409 16 173

Insert

• Insert a pair with key = 17 plus a pointer into parent.

15 20

8

1

2 4

5 6 30 4093

18

16

17

Insert

• Insert a pair with key = 17 plus a pointer into parent.

8

1

2 4

5 6 30 4093 16

17

15

18

20

Insert

• Now, insert a pair with key = 7.

1

2 4

5 6 30 4093 16

15

18

20

8 17

Insert

• Insert a pair with key = 6 plus a pointer into parent.

30 401

2 4

93 16

15

18

20

8 17

5

7

6

Insert

• Insert a pair with key = 4 plus a pointer into parent.

30 401 93 16

15

18

20

8 17

6

4

2

5 7

Insert

• Insert a pair with key = 8 plus a pointer into parent.

• There is no parent. So, create a new root.

30 40
1

9
3

16

15

18

20
6

8

2

5 7

4
17

Insert

• Height increases by 1.

30 401 93 16

15

18

2062

5 7

4 17

8

• Btree::InsertNode(Key k, Element e)
{

bool overflow = Insert(root, k, e);
if (overflow)

<Key, Node*> newpair= split(root);
root = new Node(root, newpair);

return;
}

• Bool Insert(node* x, Key k, Element e)
{

if (leaf(x))
insertLeaf(x, k, e);
if (size(x) > m-1) return true;
else return false;

idx = keySearch(x, k);
bool overflow = Insert(x->C[idx], k, e);

if (overflow)
<Key, Node*> newpair = split(x->C[idx]);
InsertPair(x, newpair);
if(size(x) > m-1)

return true;
else return false;

}

• Exercises: P609-3

