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Chapter 5 
Trees 

5.1   Introduction 
5.1.1  Terminology 
Definition: A tree is a finite set of one or more nodes
 such that   
 (1) There is a specially designated node called root.  
 (2) The remaining nodes are partitioned into n≥0
 disjoint sets T1,…, Tn, where each of these sets is a
 tree.  

 T1,…, Tn are called subtrees of the root. 
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Linear Lists And Trees 
•  Linear lists are useful for serially ordered data. 

§  (e0, e1, e2, …, en-1) 
§ Days of week. 
§ Months in a year. 
§  Students in this class. 

•  Trees are useful for hierarchically ordered data. 
§  Employees of a corporation. 

•  President, vice presidents, managers, and so on. 
§  classes. 

•  Object is at the top of the hierarchy. 
•  Subclasses of Object are next, and so on. 
 



Hierarchical Data And Trees 
 
•  The element at the top of the hierarchy is the

 root. 
•  Elements next in the hierarchy are the children

 of the root. 
•  Elements next in the hierarchy are the

 grandchildren of the root, and so on. 
•  Elements that have no children are leaves. 



great grand child of root 

grand children of root 

children of root 

Java’s Classes (Part Of Figure 1.1) 

Object 

Number Throwable OutputStream 

Integer Double Exception FileOutputStream 

RuntimeException 

root 



Definition 

•  A tree t is a finite nonempty set of elements. 
•  One of these elements is called the root. 
•  The remaining elements, if any, are

 partitioned into trees, which are called the
 subtrees of t. 

 



Subtrees 

Object 

Number Throwable OutputStream 

Integer Double Exception FileOutputStream 

RuntimeException 

root 



Leaves 

Object 

Number Throwable OutputStream 

Integer Double Exception FileOutputStream 

RuntimeException 



Parent, Grandparent, Siblings, Ancestors, Descendants 

Object 

Number Throwable OutputStream 

Integer Double Exception FileOutputStream 

RuntimeException 



Level 4 

Level 3 

Level 2 

Levels 

Object 

Number Throwable OutputStream 

Integer Double Exception FileOutputStream 

RuntimeException 

Level 1 



Caution 

•  Some texts start level numbers at 0 rather than at
 1. 

•  Root is at level 0. 
•  Its children are at level 1. 
•  The grand children of the root are at level 2. 
•  And so on. 
•  We shall number levels with the root at level 1. 



height = depth = number of levels 

Level 3 

Object 

Number Throwable OutputStream 

Integer Double Exception FileOutputStream 

RuntimeException 
Level 4 

Level 2 

Level 1 



Node Degree = Number Of Children 
Object 

Number Throwable OutputStream 

Integer Double Exception FileOutputStream 

RuntimeException 

3 

2 1 1 

0 0 1 0 

0 



Tree Degree = Max Node Degree 

Degree of tree = 3. 

Object 

Number Throwable OutputStream 

Integer Double Exception FileOutputStream 

RuntimeException 

3 

2 1 1 

0 0 1 0 

0 



Representation 

•  What to be recorded? 
§ Nodes 
§  Relationships (Edges) 

•  Array 
•  Linked Lists 



5.1.2 Representation of Trees  

Nodes ID (1,…..n) 

N
odes ID

 (1,…
..,n) 

Relationships 

D1 D2 D3 Node 



5.1.2 Representation of Trees  

For a tree of degree k, we could use a tree node that has
 fields for data and k pointers to the children 

Data Child1 Child2 … Child k 
Possible node structure for a tree of degree k 

Waste of space! 



Lemma5.1: If T is a k-ary tree with n nodes, each having
 a fixed size as in Fig.5.4, then n(k-1)+1 of the n*k child
 fields are 0, n ≥ 1. 

Proof:  
•  each non-zero child field points to a node 
•  there is exactly one pointer to each node other than the
 root 
•  the number of non-zero child fields in an n node tree
 is: 

•  n-1 
•  the number of zero fields is  

• nk-(n-1)=n(k-1)+1. 



Binary Tree 

•  Finite (possibly empty) collection of elements. 
•  A nonempty binary tree has a root element. 
•  The remaining elements (if any) are partitioned

 into two binary trees. 
•  These are called the left and right subtrees of the

 binary tree. 



Differences Between A Tree & A Binary Tree 

•  No node in a binary tree may have a degree
 more than 2, whereas there is no limit on
 the degree of a node in a tree. 

•  A binary tree may be empty; a tree cannot
 be empty. 



Differences Between A Tree & A Binary Tree 

•  The subtrees of a binary tree are ordered;
 those of a tree are not ordered. 

a

b

a

b

•  Are different when viewed as binary trees. 
•  Are the same when viewed as trees. 
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ADT 5.1 
template <class T>  
class BinaryTree 
{ // A finite set of nodes either empty or consisting of 
  // a root node, left BinaryTree and right BinaryTree. 
public: 
    BinaryTree ();  
    // creates an empty binary tree 

    bool IsEmpty ();  
    // return true iff the binary tree is empty  
    BinaryTree(BinaryTree<T>& bt1, T& item,  
                                                                
BinaryTree<T>& bt2); 
    // creates a binary tree whose left subtree is bt1,  
    // right subtree is bt2, and root node contain item. 



26 

     BinaryTree  LeftSubtree();  
    // return the left subtree of *this 
 
    T RootData(); 
    // return the data in the root of *this 
 
    BinaryTree  RightSutree();  
    // return the right subtree of *this 
}; 
 



Arithmetic Expressions 

•  (a + b) * (c + d) + e – f/g*h + 3.25 
•  Expressions comprise three kinds of entities. 

§ Operators (+, -, /, *). 
§ Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d),

 etc.). 
§ Delimiters ((, )). 



Operator Degree 

•  Number of operands that the operator requires. 
•  Binary operator requires two operands. 

§  a + b 
§  c / d 
§  e - f 

•  Unary operator requires one operand. 
§  + g 
§  - h 



Infix Form 

•  Normal way to write an expression. 
•  Binary operators come in between their left and

 right operands. 
§  a * b 
§  a + b * c 
§  a * b / c 
§  (a + b) * (c + d) + e – f/g*h + 3.25 



Operator Priorities 

•  How do you figure out the operands of an
 operator? 
§  a + b * c 
§  a * b + c / d 

•  This is done by assigning operator priorities. 
§  priority(*) = priority(/) > priority(+) = priority(-) 

•  When an operand lies between two operators,
 the operand associates with the operator that
 has higher priority. 



Tie Breaker 

•  When an operand lies between two operators
 that have the same priority, the operand
 associates with the operator on the left. 
§  a + b - c 
§  a * b / c / d 



Delimiters 

•  Subexpression within delimiters is treated
 as a single operand, independent from the
 remainder of the expression. 
§  (a + b) * (c – d) / (e – f) 



Infix Expression Is Hard To Parse 

•  Need operator priorities, tie breaker, and
 delimiters. 

•  This makes computer evaluation more
 difficult than is necessary. 

•  Postfix and prefix expression forms do not
 rely on operator priorities, a tie breaker, or
 delimiters. 

•  So it is easier for a computer to evaluate
 expressions that are in these forms. 



Postfix Form 

•  The postfix form of a variable or constant is
 the same as its infix form. 
§  a, b, 3.25 

•  The relative order of operands is the same in
 infix and postfix forms. 

•  Operators come immediately after the
 postfix form of their operands. 
§  Infix = a + b 
§  Postfix = ab+ 

 



Postfix Examples 
•  Infix = a + b * c 

§ Postfix = a b c * +

•  Infix = a * b + c 
§ Postfix = a b * c +

•  Infix = (a + b) * (c – d) / (e + f)  
§ Postfix = a b + c d - * e f + / 



Unary Operators 

•  Replace with new symbols. 
§  + a => a @ 
§  + a + b => a @ b + 
§  - a => a ? 
§  - a-b => a ? b - 



Postfix Evaluation 

•  Scan postfix expression from left to right
 pushing operands on to a stack. 

•  When an operator is encountered, pop as
 many operands as this operator needs;
 evaluate the operator; push the result on to
 the stack. 

•  This works because, in postfix, operators
 come immediately after their operands. 



Postfix Evaluation 

•  (a + b) * (c – d) / (e + f)  
•  a b + c d - * e f + / 
•  a b + c d - * e f + / 

stack 

a 

•  a b + c d - * e f + / 

b 
•  a b + c d - * e f + / 



Postfix Evaluation 

•  (a + b) * (c – d) / (e + f)  
•  a b + c d - * e f + / 
•  a b + c d - * e f + / 

stack 

(a + b) 

•  a b + c d - * e f + / 
•  a b + c d - * e f + / 
•  a b + c d - * e f + / c 

•  a b + c d - * e f + / 

d 

•  a b + c d - * e f + / 



Postfix Evaluation 

•  (a + b) * (c – d) / (e + f)  
•  a b + c d - * e f + / 

stack 

(a + b) 

•  a b + c d - * e f + / 

(c – d) 



Postfix Evaluation 

•  (a + b) * (c – d) / (e + f)  
•  a b + c d - * e f + / 

stack 

(a + b)*(c – d) 

•  a b + c d - * e f + / 

e 

•  a b + c d - * e f + / 
•  a b + c d - * e f + / f 
•  a b + c d - * e f + / 



Postfix Evaluation 

•  (a + b) * (c – d) / (e + f)  
•  a b + c d - * e f + / 

stack 

(a + b)*(c – d) 

•  a b + c d - * e f + / 

(e + f) 

•  a b + c d - * e f + / 
•  a b + c d - * e f + / 
•  a b + c d - * e f + / 
•  a b + c d - * e f + / 



Prefix Form 
•  The prefix form of a variable or constant is

 the same as its infix form. 
§  a, b, 3.25 

•  The relative order of operands is the same in
 infix and prefix forms. 

•  Operators come immediately before the
 prefix form of their operands. 
§  Infix = a + b 
§  Postfix = ab+ 
§  Prefix = +ab 

 



Binary Tree Form 

•  a + b +

a b 

•  - a - 

a 



Binary Tree Form 

•  (a + b) * (c – d) / (e + f) 
/ 

+
a b 

- 

c d 

+
e f 

* 

/ 



Evaluation of Binary Tree Form 
•  HOW? 

§  Simple recursive evaluation 
 

+

a b 
- 

c d 

+

e f 

* 

/ 

•  Exercise:  write an algorithm 
 



Binary Tree Properties & Representation 



Minimum Number Of Nodes 
•  Minimum number of nodes in a binary tree

 whose height is h. 
•  At least one node at each of first h levels. 

minimum number of
 nodes is h 



Maximum Number Of Nodes 
•  All possible nodes at first h levels are present. 

Maximum number of nodes 

= 1 + 2 + 4 + 8 + … + 2h-1 

= 2h - 1 

Lemma 5.2  



Number Of Nodes & Height 

•  Let n be the number of nodes in a binary
 tree whose height is h. 

•  h <= n <= 2h – 1 

•  log2(n+1) <= h <= n 



Lemma 5.3 [Relation between number of leaf nodes and
 degree-2 nodes]:  

For any nonempty binary tree T, if n0 is the number of
 leaf nodes and n2 is the number of nodes of degree 2,
 then n0= n2+1. 



Proof: 

Let n1 be the number of nodes of degree 1 and n the
 total number of nodes, we have 

  n= n0+ n1 + n2    (5.1) 

Each node except for the root has a branch leading into
 it. If B is the number of branches, then n = B+1. And
 also B = n1 + 2n2, hence 

  n= n1+ 2n2 + 1    (5.2) 

(5.1) – (5.2):   0= n0 - n2 –1, i.e., n0= n2+1. 



Full Binary Tree 

•  A full binary tree of a given height h has 2h – 1
 nodes. 

Height 4 full binary tree. 



Numbering Nodes In A Full Binary
 Tree 

•  Number the nodes 1 through 2h – 1.  
•  Number by levels from top to bottom. 
•  Within a level number from left to right. 

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15 



Node Number Properties  

•  Parent of node i is node i / 2, unless i = 1. 
•  Node 1 is the root and has no parent. 

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15 



Node Number Properties  

•  Left child of node i is node 2i, unless 2i > n,
 where n is the number of nodes. 

•  If 2i > n, node i has no left child. 

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15 



Node Number Properties  

•  Right child of node i is node 2i+1, unless 2i+1
 > n, where n is the number of nodes. 

•  If 2i+1 > n, node i has no right child. 

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15 

Lemma 5.4 



Complete Binary Tree With n Nodes 
•  Start with a full binary tree that has at least

 n nodes. 
•  Number the nodes as described earlier. 
•  The binary tree defined by the nodes

 numbered 1 through n is the unique n node
 complete binary tree. 

Definition: a binary tree with n nodes and depth
 k is complete iff its nodes corresponding to the
 nodes numbered from 1 to n in the full binary
 tree of depth k. 



Example 

•  Complete binary tree with 10 nodes. 

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15 



Binary Tree Representation 

•  Array representation. 
•  Linked representation. 



Array Representation 
•  Number the nodes using the numbering scheme

 for a full binary tree. The node that is
 numbered i is stored in tree[i]. 

tree[] 
0 5 10 

a b c d e f g h i j 

b 

a

c

d e f g

h i   j 

1 

2 3 

4 5 6 7 

8 9 10 



Right-Skewed Binary Tree 

•  An n node binary tree needs an array whose
 length is between n+1 and 2n. 

a

b

1 

3 

c
7 

d 
15 

tree[] 
0 5 10 

a - b - - - c - - - - - - - 
15 
d 



Drawback? 



Linked Representation 

•  Each binary tree node is represented as an
 object whose data type is TreeNode. 

•  The space required by an n node binary tree
 is n * (space required by one node). 

Exponential v.s. Linear 



The Class BinaryTreeNode 
•  template <class T> class Tree;    
•  class TreeNode { 
•  friend class Tree<T>; 
•  public: 
•      TreeNode (T& e, TreeNode<T>* left, TreeNode<T>* 

right) 
•         {data=e; leftChild=left; rightChild=right;} 
•  private: 
•      T data;  
•      TreeNode<Y>* leftChild; 
•      TreeNode<Y>* rightChild; 
•  };  



template <class T> 
class Tree { 
public: 
    // Tree operations 
… 
private: 
    TreeNode<T>* root;   
}; 
 
If necessary, a 4th field, parent, may be included
 in the node. 

leftChild data rightChild 
data 

rightChild leftChild 



Linked Representation Example 
a 

c b 

d 

f 

e 

g 

h 
leftChild 
element 
rightChild 

root 



Some Binary Tree Operations 
•  Determine the height. 
•  Determine the number of nodes. 
•  Make a clone. 
•  Determine if two binary trees are clones. 
•  Display the binary tree. 
•  Evaluate the arithmetic expression

 represented by a binary tree. 
•  Obtain the infix form of an expression. 
•  Obtain the prefix form of an expression. 
•  Obtain the postfix form of an expression. 



Binary Tree Traversal 

•  Many binary tree operations are done by
 performing a traversal of the binary tree. 

•  In a traversal, each element of the binary tree is
 visited exactly once. 

•  During the visit of an element, all action (make
 a clone, display, evaluate the operator, etc.)
 with respect to this element is taken. 



Binary Tree Traversal Methods 

•  Preorder 
•  Inorder 
•  Postorder 
•  Level order 



Preorder Example (visit = print) 
a 

b c 

a b c 



Preorder Traversal 
•  template <class T>  
•  void Tree<T>::Preorder() 
•  { // Driver. 
•       Preorder(root); 
•  } 
•  template <class T>  
•  void Tree<T>::Preorder(TreeNode<T>* currentNode) 
•  { // workhorse.  
•        if (currentNode) { 
•            Visit(currentNode); 
•            Preorder(currentNode→leftChild); 
•            Preorder(currentNode→rightChild); 
•        } 
•  } 



Preorder Example (visit = print) 
a 

b c 

d e f 

g h i j 

a b d g h e i c f j 



Preorder Of Expression Tree 

+
a b 

- 
c d 

+
e f 

* 

/ 

Gives prefix form of expression! 

/ * + a b - c d + e f 



Inorder Example (visit = print) 
a 

b c 

b a c 



Inorder Traversal 
•  template <class T> 
•  void Tree<T>::Inorder() 
•  { // driver as a public member 
•      Inorder(root); 
•  } 
•  template <class T> 
•  void Tree<T>::Inorder (TreeNode<T>* currentNode) 
•  { // workhorse as a private member of Tree  
•       if (CurrentNode) { 
•            Inorder(currentNode→leftChild); 
•            Visit(currentNode) 
•            Inorder(currentNode→rightChild); 
•        } 
•  } 



Inorder Example (visit = print) 
a 

b c 

d e f 

g h i j 

g d h b e i a f j c 



Inorder By Projection 
a 

b c 

d e f 

g h i j 

g d h b e i a f j c 



Inorder Of Expression Tree 

+
a b 

- 
c d 

+
e f 

* 

/ 

Gives infix form of expression (sans parentheses)! 

e a + b * c d / + f - 



Postorder Example (visit = print) 
a 

b c 

b c a 



Postorder Traversal 
•  template <class T> 
•  void Tree<T>::Postorder() 
•  { // Driver. 
•      Postorder(root); 
•  } 

•  template <class T> 
•  void Tree<T>::Postorder (TreeNode<T>* currentNode) 
•  { // Workhorse.  
•        if (currentNode) { 
•           Postorder(currentNode→leftChild); 
•           Postorder(currentNode→rightChild );  
•           Visit(currentNode); 
•        } 
•  } 
 



Postorder Example (visit = print) 
a 

b c 

d e f 

g h i j 

g h d i e b j f c a 



Postorder Of Expression Tree 

+
a b 

- 
c d 

+
e f 

* 

/ 

Gives postfix form of expression! 

a b + c d - * e f + / 



Traversal Applications 
a 

b c 

d e f 

g h i j 

•  Make a clone. 

•  Determine height. 

• Determine number of nodes. 



•  Int h(T * root) 
•  { 

§  If(root == null ) return 0; 
§  Else 
§  { 

•  Int hl = h (root->leftchild); 
•  Int hr = h(root->rightchild); 
•  Return hl + hr + 1; 

§  } 
•  } 



Iterative Inorder Traversal 
 
• Tree iterator 

• Access nodes one by one 

• Non-recursive tree traversal algorithm 
• Inorder 

 
• Data structure: 

• Stack! 

a 

b c 

d e f 

g h i j 



1 template <class T> 
2 void Tree<T>::NonrecInorder() 
3 { // Nonrecursive inorder traversal using a stack 
4  Stack<TreeNode<T>*> s; // declare and initialize a stack 
5  TreeNode<T>* currentNode=root; 
6    while (1) {      
7       while (currentNode) { // move down leftChild 
8         s.Push(currentNode); // add to stack 
9         currentNode=currentNode→leftChild; 
10     } 
11     If (s.IsEmpty()) return; 
12      currentNode=s.Top();  
13      s.Pop(); // delete from stack 
14      Visit(currentNode); 
15      currentNode=currentNode→rightChild; 
16   } 
17} 
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The NonrecInorder USES-A template stack. 
 
Definition: A data object of Type A USES-A data object 
of Type B if a Type A object uses a Type B object to 
perform a task. Typically, a Type B object is employed 
in a member function of Type A. 
 
USES-A is similar to IS-IMPLEMENTED-IN-TERMS-
OF, but the degree of using the Type B object is less. 



Analysis of NonrecInorder:  

•  n---the number of nodes in the tree. 
•  every node is placed on the stack once, line 8, 9 and 11 
to 15 are executed n times. 
•  currenetNode will equal 0 once for every 0 link, which 
is 2n0+ n1=n0+n1+n2+1=n+1. 

The computing time: O(n). 

The space required for the stack is equal to the depth of 
the tree. 

Now we use the function NonrecInorder to obtain an 
inorder iterator for a tree. 



The key observation is that each iteration of the 
while loop of line 6-16 yields the next element in 
the inorder traversal of the tree. 
 
class InorderIterator { // a public nested member class of 
Tree  
public:  
    InorderIterator() {currentNode=root;};  
    T* Next( );  
private: 
    Stack<TreeNode<T>*> s; 
    TreeNode<T>* currentNode; 
}; 



T* InorderIterator::Next() 
{ 
     while (currentNode) {  
         s.Push(currentNode);  
         currentNode=currentNode→LeftChild; 
     } 
     if (s.IsEmpty()) return 0;  
     currentNode=s.Top();  
     T& temp=currentNode→data; 
     currentNode=currentNode→rightChild;  
     return &temp; 
} 



Level-Order Example (visit = print) 
a 

b c 

d e f 

g h i j 

a b c d e f g h i j 

Storage? 
 
FIFO Queue 



Level Order 

Let t be the tree root. 
while (t != null) 
{ 
    visit t and put its children on a FIFO queue; 
    remove a node from the FIFO queue and

 call it t; 
    // remove returns null when queue is empty 
} 



•  Q q; 
•  Q.push_back(root); 
•  While(!q.is_empty()) 
•  { 

§ Node * ptr = q.pop_front(); 
§ Visit(ptr); 
§  If(ptr->left_child) q.push_back(ptr->left_child); 
•  If(ptr->right_child) q.push_back(ptr->left_right); 

•  } 
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Additional Binary Tree Operations 

Copying Binary Trees 
template <class T> 
Tree<T>::Tree(const Tree<T>& s)  // driver 
{ // Copy constructor 
    root = Copy( s.root ); 
} 
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template <class T> 
TreeNode<T>* Tree<T>::Copy(TreeNode<T>* origNode)  
// workhorse  
{  
  // Return a pointer to an exact copy of the binary  
  // tree rooted at origNode 
     if (!origNode) return 0; 
     return new TreeNode<T>(origNode→data,  
                                               Copy(origNode→leftChild), 
                                               Copy(origNode →rightChild)); 
} 
 
 



Testing Equality 
 
template <class T> 
bool Tree<T>::operator==(const Tree& t) const 
{ 
    return Equal(root, t.root); 
} 

template <class T> 
bool Tree<T>::Equal(TreeNode<T>* a, TreeNode<T>* b) 
{// Workhorse- 
    if ((!a) && (!b)) return true; // both a and b are 0 
    return (a && b           // both a and b are non-0 
        && (a→data == b→data)                   //data is the same  
        && Equal(a→leftChild, b→leftChild)             //left equal 
        && Equal(a→rightChild, b→rightChild));      //right equal 
} 



Binary Tree Construction 
•  Suppose that the elements in a binary tree

 are distinct. 
•  Can you construct the binary tree from

 which a given traversal sequence came? 
•  When a traversal sequence has more than

 one element, the binary tree is not uniquely
 defined. 

•  Therefore, the tree from which the sequence
 was obtained cannot be reconstructed
 uniquely. 



Some Examples 
preorder

 = ab 
a 

b 

a 

b 

inorder
 = ab 

b 

a 

a 

b 

postorder
 = ab 

b 

a 

b 

a 

level order
 = ab 

a 

b 

a 

b 



Binary Tree Construction 

 
•  Can you construct the binary tree,

 given two traversal sequences? 
•  Depends on which two sequences are

 given. 



Preorder And Postorder 

preorder = ab a 

b 

a 

b postorder = ba 

•  Preorder and postorder do not uniquely define a
 binary tree. 

•  Nor do preorder and level order (same example). 

•  Nor do postorder and level order (same example). 



Inorder And Preorder 
•  inorder = g d h b e i a f j c 
•  preorder = a b d g h e i c f j 
•  Scan the preorder left to right using the

 inorder to separate left and right subtrees. 
•  a is the root of the tree; gdhbei are in the left

 subtree; fjc are in the right subtree. 

a 

gdhbei fjc 



Inorder And Preorder 

•  preorder = a b d g h e i c f j 
•  b is the next root; gdh are in the left

 subtree; ei are in the right subtree. 

a 

gdhbei fjc 

a 

gdh 

fjc b 

ei 



Inorder And Preorder 

•  preorder = a b d g h e i c f j 
•  d is the next root; g is in the left

 subtree; h is in the right subtree. 

a 

gdh 

fjc b 

ei 

a 

g 

fjc b 

ei d 

h 



Inorder And Postorder 

 
•  Scan postorder from right to left using

 inorder to separate left and right subtrees. 
•   inorder = g d h b e i a f j c 
•   postorder = g h d i e b j f c a 
•  Tree root is a; gdhbei are in left subtree; fjc

 are in right subtree. 



Inorder And Level Order 

 
•  Scan level order from left to right using

 inorder to separate left and right subtrees. 
•   inorder = g d h b e i a f j c 
•   level order = a b c d e f g h i j 
•  Tree root is a; gdhbei are in left subtree; fjc

 are in right subtree. 



 
Exercises: 
 
 
 1. A binary tree, inorder = g d h b e i a f j c, 
 postorder = g h d i e b j f c a,  construct the tree. 
 
 
2. A Tree with degree 3, Preorder = ABCDEFGHI, 
Postorder=BCGHFEIDA, construct the tree. 
 
 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 

B 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 

B C 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 

B C D 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 

B C D 

E 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 

B C D 

E 

F 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 

B C D 

E 

F 

G 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 

B C D 

E 

F 

G H 



 Preorder = ABCDEFGHI,
 Postorder=BCGHFEIDA 

A 

B C D 

E 

F 

G H 

I 



117 

 
Exercises: P267-4, P267-6, P272-1, P273-4 
Experiment: P267-10 



Binary Search Trees 

•  Dictionary Operations: 
§  get(key) 
§  put(key, value) 
§  remove(key) 

•  Additional operations: 
§  ascend() 
§  get(index) (indexed binary search tree) 
§  remove(index) (indexed binary search tree) 

§  no two pairs have the same key 



ADT 5.3 
template <class K, class E>  
class Dictionary {    
public:  
    virtual bool IsEmpty () const = 0; 
        // return true iff the dictionary is empty 
    virtual pair<K,E>* Get(const K&) const = 0; 
        // return pointer to the pair with specified key;  
        // return 0 if no such pair 
    virtual void Insert(const pair<K,E>&) = 0; 
        // insert the given pair; if key is a duplicate  
        // update associated element 
    virtual void Delete(const K&) = 0; 
        // delete pair with specified key 
}; 



•  template <class K, class E>  
•  struct pair  
•  {    
•      K first; 
•      E second; 
•  }; 



Definition Of Binary Search Tree 

•  A binary tree. 
•  Each node has a (key, value) pair. 
•  For every node x, all keys in the left

 subtree of x are smaller than that in x. 
•  For every node x, all keys in the right

 subtree of x are greater than that in x. 
 



Example Binary Search Tree 
20 

10 

6 

2 8 

15 

40 

30 

25 

Only keys are shown. 



The Operation ascend() 
20 

10 

6 

2 8 

15 

40 

30 

25 

Do an inorder traversal. O(n) time. 



The Operation get() 
20 

10 

6 

2 8 

15 

40 

30 

25 

Complexity is O(height) = O(n), where n is
 number of nodes/elements. 



•  Search for an element with key k: 
§  If k==the key in root, success 
§  If x<the key in root,  search the left subtree 
§  If x>the key in root,  search the right subtree 

The Operation get() 



The Operation get() 
template <class K, class E> // Driver 
pair<K,E>* BST<K,E>::Get(const K& k) 
{ // Search *this for a pair with key k. 
    return Get(root, k); 
} 
 
template <class K, class E> // Workhorse 
pair<K,E>* BST<K,E>::Get(treeNode<pair<K,E>>* p,  
                                                                       const K& k) 
{ 
     if (!p) return 0; 
     if (k < p→data.first) return Get(p→leftChild, k);  
     if (k > p→data.first) return Get(p→rightChild, k);  
     return &p→data; 
} 



template <class K, class E>  // Iterative version 
pair<K,E>* BST<K,E>::Get(const K& k) 
{ 
     TreeNode<pair<K,E>>* currentNode = root;  
     while (currentNode) 
        if (k < currentNode→data.first)  
            currentNode = currentNode→leftChild; 
        else if (k > currentNode→data.first)  
            currentNode = currentNode→rightChild; 
        else return &currentNode→data; 
     // no matching pairs 
     return 0; 
} 



The Operation put() 
20 

10 

6 

2 8 

15 

40 

30 

25 

Put a pair whose key is 35. 

35 



The Operation put() 

Put a pair whose key is 7. 

20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 



The Operation put() 
20 

10 

6 

2 8 

15 

40 

30 

25 

Put a pair whose key is 18. 

35 

7 

18 



The Operation put() 
20 

10 

6 

2 8 

15 

40 

30 

25 

Complexity of put() is O(height). 

35 

7 

18 



When the dictionary already 
contains a pair with key k 
 
Simply update the element 
associated with this key to e 



template <class K, class E> 
void BST<K,E>::Insert(const pair<K,E>& thePair) {  
      TreeNode<pair<K,E>> *p=root, *pp=0; 
      while (p) { 
        pp=p; 
        if (thePair.first < p→data.first) p=p→leftChild; 
        else if (thePair.first > p→data.first) p=p→rightChild;  
        else // duplicate, update associated element 
             {p→data.second=thePair.second;return;} 
      }  
      p=new TreeNode<pair<K,E>>(thePair,0,0); 
      if (root) // tree not empty 
         if (thePair.first < pp→data.first) pp→leftChild=p; 
            else pp→rightChild=p; 
      else root=p; 
}  

O(h) 



The Operation remove() 

Three cases: 

§  Element is in a leaf. 

§  Element is in a degree 1 node. 

§  Element is in a degree 2 node. 
10 

6 

2 8 

15 

7 

18 



Remove From A Leaf 

Remove a leaf element. key = 7 

20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 



Remove From A Leaf (contd.) 

Remove a leaf element. key = 35 

20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 



Remove From A Degree 1 Node 

Remove from a degree 1 node. key = 40 

20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 



Remove From A Degree 1 Node (contd.) 

Remove from a degree 1 node. key = 15 

20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 



Remove From A Degree 2 Node 

Remove from a degree 2 node. key = 10 

20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 



Remove From A Degree 2 Node 
20 

10 

6 

2 8 

15 

40 

30 

25 

Replace with largest key in left subtree (or
 smallest in right subtree). 

35 

7 

18 



Remove From A Degree 2 Node 
20 

10 

6 

2 8 

15 

40 

30 

25 

Replace with largest key in left subtree (or
 smallest in right subtree). 

35 

7 

18 



Remove From A Degree 2 Node 
20 

8 

6 

2 8 

15 

40 

30 

25 

Replace with largest key in left subtree (or
 smallest in right subtree). 

35 

7 

18 



Remove From A Degree 2 Node 
20 

8 

6 

2 8 

15 

40 

30 

25 

Largest key must be in a leaf or degree 1 node. 

35 

7 

18 



Another Remove From A Degree 2 Node 

Remove from a degree 2 node. key = 20 

20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 



Remove From A Degree 2 Node 
20 

10 

6 

2 8 

15 

40 

30 

25 

Replace with largest in left subtree. 

35 

7 

18 



Remove From A Degree 2 Node 
20 

10 

6 

2 8 

15 

40 

30 

25 

Replace with largest in left subtree. 

35 

7 

18 



Remove From A Degree 2 Node 
18 

10 

6 

2 8 

15 

40 

30 

25 

Replace with largest in left subtree. 

35 

7 

18 



Remove From A Degree 2 Node 
18 

10 

6 

2 8 

15 

40 

30 

25 

Complexity is O(height). 

35 

7 Exercises: P296-1,2 



Indexed Binary Search Tree 

•  Binary search tree. 
•  Each node has an additional field. 

§  leftSize = number of nodes in its left subtree 



Example Indexed Binary Search Tree 
20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 
0

0 1

1

4

0

0

7

0 0

1

3

leftSize values are out of the circle 



leftSize And Rank 

Rank of an element is its position in inorder
 (inorder = ascending key order). 

[2,6,7,8,10,15,18,20,25,30,35,40] 

rank(2) = 0 

rank(15) = 5 

rank(20) = 7 

leftSize(x) = rank(x) with respect to elements in
 subtree rooted at x 



leftSize And Rank 
20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 
0

0 1

1

4

0

0

7

0 0

1

3

sorted list = [2,6,7,8,10,15,18,20,25,30,35,40] 



get(index) And remove(index) 
7

20 

10 

6 

2 8 

15 

40 

30 

25 35 

7 

18 
0

0 1

1

4

0

0

0 0

1

3

sorted list = [2,6,7,8,10,15,18,20,25,30,35,40] 



get(index) And remove(index) 

•  if index = x.leftSize  desired element is
 x.element 

•  if index < x.leftSize  desired element is
 index’th element in left subtree of x 

•  if index > x.leftSize  desired element is
 (index - x.leftSize-1)’th element in right
 subtree of x 

 



Applications 
 (Complexities Are For Balanced Trees) 

Best-fit bin packing in O(n log n) time. 
Representing a linear list so that get(index),

 add(index, element), and remove(index)
 run in O(log(list size)) time (uses an
 indexed binary tree, not indexed binary
 search tree). 

Can’t use hash tables for either of these
 applications.   



Linear List As Indexed Binary Tree 

h 

e 

b 

a d 

f 

l 

j 

i k 

c 

g 
0

0 1

1

4

0

0

7

0 0

1

3

list = [a,b,c,d,e,f,g,h,i,j,k,l] 



add(5,’m’) 

h 

e 

b 

a d 

f 

l 

j 

i k 

c 

g 
0

0 1

1

4

0

0

7

0 0

1

3

list = [a,b,c,d,e,f,g,h,i,j,k,l] 



add(5,’m’) 

h 

e 

b 

a d 

f 

l 

j 

i k 

c 

g 
0

0 1

1

4

0

0

7

0 0

1

3

list = [a,b,c,d,e,m,f,g,h,i,j,k,l] 
find node with element 4 (e) 



add(5,’m’) 

h 

e 

b 

a d 

f 

l 

j 

i k 

c 

g 
0

0 1

1

4

0

0

7

0 0

1

3

list = [a,b,c,d,e, m,f,g,h,i,j,k,l] 
find node with element 4 (e)  



add(5,’m’) 

h 

e 

b 

a d 

f 

l 

j 

i k 

c 

g 
0

0 1

1

4

0

0

7

0 0

1

3

add m as right child of e; former right
 subtree of e becomes right subtree of
 m 

m 



add(5,’m’) 

h 

e 

b 

a d 

f 

l 

j 

i k 

c 

g 
0

0 1

1

4

0

0

7

0 0

1

3

add m as leftmost node in right subtree
 of e 

m 



add(5,’m’) 

•  Other possibilities exist. 
•  Must update some leftSize values on path

 from root to new node. 
•  Complexity is O(height). 



•  Exercise: 

§ Data IndexedBinaryTree::Search(int idx); 
§  Bool IndexedBinaryTree::Insert(int idx, int

 data); 



Threaded Trees 

•  Binary trees have a lot of wasted space:  
§  the leaf nodes each have 2 null pointers 

•  We can use these pointers to help us in
 inorder traversals 

•  We have the pointers reference the next
/previous node in an inorder traversal;
 called threads 

•  We need to know if a pointer is an actual
 link or a thread, so we keep a boolean for
 each pointer 



The threads are constructed using the following
 rules: 

(1)  A 0 rightChild field at node p is replaced by a
 pointer to the inorder successor of p. 

(2)   A 0 leftChild field at node p is replaced by a
 pointer to the inorder predecessor of p.  



The following is a threaded tree, in which node E has a
 predecessor thread pointing to B and  a successor
 thread to A. 



To distinguish between threads and normal pointers,
 add two bool fields:  

•  leftThread 

•  rifgtThread 

If t→leftThread == true, then t→leftChild contains a
 thread 

otherwise a pointer to left child 

Similar for t→rightThread. 



template <class T> 
class ThreadedNode { 
friend class ThreadedTree; 
private: 
    bool  leftThread; 
    ThreadedNode * leftChild; 
    T data; 
    ThreadedNode * rightChild; 
    bool  rightThread; 
}; 



template <class T>  
class ThreadedTree { 
public: 
    // Tree operations 
… 
private: 
    ThreadedNode *root;   
}; 



Let ThreadedInorderIterator be a nested
 class of ThreadedTree: 
  
class ThreadedInorderIterator { 
public: 
    T* Next(); 
    ThreadedInorderIterator() 
         { currentNode = root; }  
private:  
    ThreadedNode<T>* currentNode;   
}; 



To make the left thread of the first node in inorder and 
the right thread of the last node in inorder un-dangle, 
we assume a head node for all threaded binary tree, let 
the two threads point to the head. 
 
The original tree is the left subtree of the head, and the 
rightChild of head points to the head itself. 

leftThread leftChild data rightChild rightThread 
true false 

An empty threaded binary tree 



f - f 

memory representation of  threaded tree 

f - f 

f A f 

t G t 

f C f f B f 

t F t f D f t E t 

t H t t I t 

root 

we can see: 

(1) The inorder successor of the head node is the
 first node in inorder; 

(2) The inorder successor of the last node in
 inorder is the head node. 



Inorder Traversal of a Threaded Binary Tree 

Observe: 
(1)  If x→rightThread==true 

     the inorder successor of x is  
      
     x→rightChild;  



(2) If x→rightThread==false 

 the inorder successor of x is obtained by  

 following a path of leftChild from the
 right child of x until  

a node with leftThread==true is reached. 
x 



Thus we have: 
 
T* ThreadedInorderIterator::Next() 
{ // Return the inorder successor of currentNode in a 
threaded 
  //  binary tree  
     ThreadedNode<T>* temp=currentNode→rightChild; 
     if (! currentNode→rightThread) 
         while (!temp→leftThread) 

  temp=temp→leftChild; 
     currentNode=temp; 
     if (currentNode==root)  

 return 0; //no next  
     else  

 return &currentNode→data; 
}   



Note that when currentNode == root, Next() return the
 1st node of inorder, thus we can use the following
 function to do an inorder travesal of a threaded binary
 tree: 
 
template <class T> 
void ThreadedTree::Inorder() 
{ 
    ThreadedInorderiterator ti; 
    for (T* p = ti.Next(); p; p = ti.Next())    
    Visit(*p); 
}    



Inserting a Node into a Threaded Binary Tree 
 
Insertion into a threaded tree provides the function for 
growing threaded tree. 
 
We shall study only the case of inserting r as the right 
child of s. The left child case is similar.  



(1) If s→rightThread==true, as: 

s 

r 
è 

s 

r 

① 

② 
③ 



(2) If s→rightThread==false, as: 

s 

r è 

① ② 

③ 

s 

r 

④ 

In both (1) and (2), actions ①,②, ③ are the same,④ is 
special for (2). 



template <class T> 
void  ThreadedTree<T>::InsertRight(ThreadedNode<T>* s,  
                                                     ThreadedNode<T>* r) 
{ // insert r as the right child of s  
     r→rightChild=s→rightChild;   // ① 
     r→rightThread=s→rightThread;  // ① note s!=t.root,    
     r→leftChild=s;     // ② 
     r→leftThread=true;     // ② 
     s→rightChild=r;     // ③ 
     s→rightThread=false;             // ③ 
     if (! r→rightThread) {     // case (2) 
         ThreadedNode<T>* temp=InorderSucc(r);  // ④ 
         temp→leftChild=r;      // ④ 
     } 
}   



 
Exercises: P277-1, P278-4 
 
 
 
 
 
Given a binary tree, make it an inorder
 threaded binary tree. 



Priority Queues 

Two kinds of priority queues: 
•  Min priority queue. 
•  Max priority queue. 



Min Priority Queue 

•  Collection of elements. 
•  Each element has a priority or key. 
•  Supports following operations: 

§  isEmpty 
§  size 
§  add/put an element into the priority queue 
§  get element with min priority 
§  remove element with min priority 



Max Priority Queue 

•  Collection of elements. 
•  Each element has a priority or key. 
•  Supports following operations: 

§  isEmpty 
§  size 
§  add/put an element into the priority queue 
§  get element with max priority 
§  remove element with max priority 

     
     



ADT MaxHeap 
 •  template <class T> class MaxPQ { 

•  public: 
•      virtual ~MaxPQ { }       // virtual destructor 
•      virtual bool IsEmpty() const = 0; 
•         // return true iff the priority queue is empty 
•      virtual const T& Top() const = 0; 
•         // return reference to the max element 
•      virtual void Push(const T&) = 0; 
•         // add an element to the priority queue 
•      virtual void Pop() = 0;        
•      // delete the max element 
•  }; 



Complexity Of Operations 

First idea: 
    Linear List     
  Unordered Linear List 
    Ordered Linear List 

Complexity 
   isEmpty 
   Push 
   Pop 

 



Complexity Of Operations 

Two good implementations are heaps
 and leftist trees. 

 
isEmpty, size, and get => O(1) time 
 
put and remove => O(log n) time

 where n is the size of the priority
 queue 



Applications 
Sorting 
•  use element key as priority 
•  put elements to be sorted into a priority queue 
•  extract elements in priority order 

§  if a min priority queue is used, elements are
 extracted in ascending order of priority (or key) 

§  if a max priority queue is used, elements are
 extracted in descending order of priority (or key) 



Sorting Example 
Sort five elements whose keys are 6, 8, 2, 4, 1

 using a max priority queue. 
§  Put the five elements into a max priority queue. 
§ Do five remove max operations placing removed

 elements into the sorted array from right to left. 



After Putting Into Max Priority Queue 

Sorted Array  

6 8 

2 

4 
1 Max Priority

 Queue 



After First Remove Max Operation 

Sorted Array  

6 

2 

4 
1 

8 

Max Priority
 Queue 



After Second Remove Max Operation 

Sorted Array  

2 

4 
1 

8 6 

Max Priority
 Queue 



After Third Remove Max Operation 

Sorted Array  

2 1 

8 6 4 

Max Priority
 Queue 



After Fourth Remove Max Operation 

Sorted Array  

1 

8 6 4 2 

Max Priority
 Queue 



After Fifth Remove Max Operation 

Sorted Array  

8 6 4 2 1 

Max Priority
 Queue 



Complexity Of Sorting 

Sort n elements. 
§  n put operations => O(n log n) time. 
§  n remove max operations => O(n log n) time. 
§  total time is O(n log n). 
§  compare with sort methods O(n2)* 



Machine Scheduling 
§ m identical machines 
§  n jobs/tasks to be performed 
§  assign jobs to machines so that the time at which

 the last job completes is minimum 



Machine Scheduling Example 

3 machines and 7 jobs 
job times are [6, 2, 3, 5, 10, 7, 14] 
possible schedule 
 
 
 

A 

B 

C 
time -----------> 

6 

2 

3 

7 

13 

13 

21 



Machine Scheduling Example 

Finish time = 21 
Objective: Find schedules with minimum finish time. 

A 

B 

C 
time -----------> 

6 

2 

3 

7 

13 

13 

21 



LPT Schedules 

Longest Processing Time first. 
Jobs are scheduled in the order 

14, 10, 7, 6, 5, 3, 2 
Each job is scheduled on the machine

 on which it finishes earliest. 



LPT Schedule 

[14, 10, 7, 6, 5, 3, 2] 
 
 A

B

C

14 

7 

15 

16 

16 

Finish time is 16! 

10 

13 



LPT Schedule 

•  LPT rule does not guarantee minimum finish
 time schedules. 

•  Usually LPT finish time is much closer to
 minimum finish time. 

•  Minimum finish time scheduling is NP-hard. 



NP-hard Problems 

•  Infamous class of problems for which no one
 has developed a polynomial time algorithm. 

•   That is, no algorithm whose complexity is
 O(nk) for any constant k is known for any NP
-hard problem. 

•  The class includes thousands of real-world
 problems. 

•  Highly unlikely that any NP-hard problem can
 be solved by a polynomial time algorithm. 



NP-hard Problems 
•  Since even polynomial time algorithms with

 degree k > 3 (say) are not practical for large n,
 we must change our expectations of the
 algorithm that is used. 

•   Usually develop fast heuristics for NP-hard
 problems. 
§ Algorithm that gives a solution close to best. 
§  Runs in acceptable amount of time. 

•  LPT rule is good heuristic for minimum finish
 time scheduling. 



Complexity Of LPT Scheduling 
•  Sort jobs into decreasing order of task time. 

§ O(n log n) time (n is number of jobs) 
•  Schedule jobs in this order. 

§  assign job to machine that becomes available first 
§ must find minimum of m (m is number of machines)

 finish times 
§  takes O(m) time using simple strategy 
§  so need O(mn) time to schedule all n jobs. 



Using A Min Priority Queue 

•  Min priority queue has the finish times of the
 m machines. 

•  Initial finish times are all 0. 
•  To schedule a job, remove machine with

 minimum finish time from the priority queue. 
•  Update the finish time of the selected machine

 and put the machine back into the priority
 queue. 



Using A Min Priority Queue 

•  m put operations to initialize priority queue 
•  1 remove min and 1 put to schedule each job 
•  each put and remove min operation takes 

 O(log m) time 
•  time to schedule is O(n log m) 
•  overall time is  

O(n log n + n log m) = O(n log (mn)) 



Min Tree Definition 
Each tree node has a value. 
Value in any node is the minimum value in

 the subtree for which that node is the root. 
Equivalently, no descendent has a smaller

 value. 



Min Tree Example 

2

4 9 3

4 8 7

9 9

Root has minimum element. 



Max Tree Example 

9

4 9 8

4 2 7

3 1

Root has maximum element. 



Min Heap Definition 

•  complete binary tree 
•  min tree 



Min Heap With 9 Nodes 

Complete binary tree with 9 nodes. 



Min Heap With 9 Nodes 

Complete binary tree with 9 nodes
 that is also a min tree. 

2 

4 

6 7 9 3 

8 6 

3 



Max Heap With 9 Nodes 

Complete binary tree with 9 nodes
 that is also a max tree. 

9 

8 

6 7 2 6 

5 1 

7 



 Heap Height 

Since a heap is a complete binary
 tree, the height of an n node heap
 is log2 (n+1). 

 
How to represent a Heap? 



template <class T>  
class MaxHeap: public MaxPQ <T> 
{    
public:  
     MaxHeap (int theCapacity=10);  
     bool IsEmpty () { return heapSize==0;} 
     const T& Top() const; 
     void Push(const T&); 
     void Pop();    
private:  
    T* heap;               // element array 
    int heapSize;  // number of elements in heap 
    int capacity;         // size of the array heap 
}; 



9 8 7 6 7 2 6 5 1
1 2 3 4 5 6 7 8 9 10 0

A Heap Is Efficiently Represented As An Array 

9 

8 

6 7 2 6 

5 1 

7 



template <class T> 
MaxHeap<T>::MaxHeap (int theCapacity=10) 
{ //constructor 
     if (theCapacity < 1) throw “Capacity must be >= 1”; 
     capacity = theCapacity;  
     heapSize = 0;  
     heap = new T[capacity+1]; //heap[0] not used 
} 
 
template <class T> 
Inline T& MaxHeap<T>::Top() 
{ 
     if (IsEmpty()) throw “The heap is empty”; 
     return heap[1]; 
} 



Moving Up And Down A Heap 
9 

8 

6 7 2 6 

5 1 

7 

1 

2 3 

4 5 6 7 

8 9 



Putting An Element Into A Max Heap 

Complete Binary Tree 
 
Max Tree 



Putting An Element Into A Max Heap 

Complete binary tree with 10 nodes. 

9 

8 

6 7 2 6 

5 1 

7 

7  Be a complete binary tree? 



Putting An Element Into A Max Heap 

New element is 5. 

9 

8 

6 7 2 6 

5 1 

7 

7 5 Be a Max Heap? 



Putting An Element Into A Max Heap 

New element is 20. 

9 

8 

6 

7 

2 6 

5 1 

7 

7 

7

Be a Max Heap? 



Putting An Element Into A Max Heap 

New element is 20. 
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8 
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7 

2 6 

5 1 

7 

7 7



Putting An Element Into A Max Heap 

New element is 20. 

9 

8 6 

7 

2 6 

5 1 

7 

7 7



Putting An Element Into A Max Heap 

New element is 20. 

9 

8 6 

7 

2 6 

5 1 

7 

7 7

20 



Putting An Element Into A Max Heap 

Complete binary tree with 11 nodes. 

9 

8 6 

7 

2 6 

5 1 

7 

7 7

20 

   



Putting An Element Into A Max Heap 

New element is 15. 

9 

8 6 

7 

2 6 

5 1 

7 

7 7

20 

   



Putting An Element Into A Max Heap 

New element is 15. 

9 

8 

6 

7 

2 6 

5 1 

7 

7 7

20 

8 



Putting An Element Into A Max Heap 

New element is 15. 

8 

6 

7 

2 6 

5 1 

7 

7 7

20 

8 

9 

15 



Complexity Of Put 

Complexity is O(log n), where n is
 heap size. 

8 

6 

7 

2 6 

5 1 

7 

7 7

20 

8 

9 

15 



template <class T> 
void MaxHeap<Type>::Push(const T& e)  
{ // insert e into the max heap 
    if (heapSize == capacity)  { // double the capacity 
        ChangeSize1D(heap, capacity, 2*capacity);   
        capacity *= 2; 
    } 
    int currentNode = ++heapSize; 
    while (currentNode != 1 && heap[currentNode/2] < e)  
    {  // bubble up 
        heap[currentNode] = heap[currentNode/2]; 
        currentNode /=2; 
    } 

    heap[currentNode] = e; 
} 

O(log n) 



Removing The Max Element 

Complete Binary Tree 
 
Max Tree 



Removing The Max Element 

Max element is in the root. 

8 

6 

7 

2 6 

5 1 

7 

7 7

20 

8 

9 

15 



Removing The Max Element 

After max element is removed. 

8 

6 

7 

2 6 

5 1 

7 

7 7 8 

9 

15 

 Be a complete binary tree? 



Removing The Max Element 

Heap with 10 nodes. 

8 

6 

7 

2 6 

5 1 

7 

7 7 8 

9 

15 

Reinsert 8 into the heap. 



Removing The Max Element 

Reinsert 8 into the heap. 

8 

6 

7 

2 6 

5 1 

7 

7 7

9 

15 

Be a Max Heap? 



Removing The Max Element 

Reinsert 8 into the heap. 
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7 

2 6 

5 1 

7 

7 7

9 

15 



Removing The Max Element 

Reinsert 8 into the heap. 

6 

7 

2 6 

5 1 

7 

7 7

9 

15 

8 



Removing The Max Element 

Max element is 15. 

6 

7 

2 6 

5 1 

7 

7 7

9 

15 

8 



Removing The Max Element 

After max element is removed. 

6 

7 

2 6 

5 1 

7 

7 7

9 

8 



Removing The Max Element 

Heap with 9 nodes. 

6 

7 

2 6 

5 1 

7 

7 7

9 

8 



Removing The Max Element 

Reinsert 7. 

6 2 6 

5 1 

7 9 

8 



Removing The Max Element 

Reinsert 7. 

6 2 6 

5 1 

7 

9 

8 



Removing The Max Element 

Reinsert 7. 

6 2 6 

5 1 

7 

9 

8 

7 



Complexity Of Remove Max Element 

Complexity is O(log n). 

6 2 6 

5 1 

7 

9 

8 

7 



template <class T> 
void MaxHeap<T>::Pop()  
{ // delete the max element.      
    if (IsEmpty()) throw “Heap is empty. Cannot delete.”;  
    heap[1].~T(); // delete the max 

    // remove the last element from heap 
    T lastE = heap[heapSize--]; 

    // trickle down 
    int currentNode = 1;  // root 
    int child = 2;      // left child of currentNode 



    while (child <= heapSize)  
    { 
       // set child to the larger child of currentNode 
       if (child<heapSize && heap[child]<heap[child+1]) 
child++;   

       // can we put lastE in currentNode? 
       if (lastE>=heap[child]) break;  // yes 

       // no 
       heap[currentNode]=heap[child]; // move child up 
       currentNode=child; child*=2; // move down a level 
     } 

    heap[currentNode]=lastE; 
} 



•  Exercises: P287-2, 3 



Initializing A Max Heap 

input array = [-, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] 

8 

4 

7 

6 7 

8 9 

3 

7 10 

1 

11 

5 

2 



Initializing A Max Heap 

Start at rightmost array position that has a child. 

8 

4 

7 

6 7 

8 9 

3 

7 10 

1 

11 

5 

2 

Index is n/2. 



Initializing A Max Heap 

Move to next lower array position. 
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4 

7 

6 7 

8 9 

3 

7 10 

1 

5 

11 

2 



Initializing A Max Heap 

8 

4 

7 

6 7 

8 9 

3 

7 10 

1 

5 

11 

2 



Initializing A Max Heap 

8 

9 

7 

6 7 

8 4 

3 

7 10 

1 

5 

11 

2 



Initializing A Max Heap 

8 

9 

7 

6 7 

8 4 

3 

7 10 

1 

5 

11 

2 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 10 

1 

5 

11 

2 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 10 

1 

5 

11 

2 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 10 

1 

5 

11 

Find a home for 2. 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 5 

1 

11 

Find a home for 2. 

10 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 2 

1 

11 

Done, move to next lower array position. 

10 

5 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 2 

1 

11 

10 

5 

Find home for 1. 



11 

Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 2 

10 

5 

Find home for 1. 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 2 

11 

10 

5 

Find home for 1. 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 2 

11 

10 

5 

Find home for 1. 



Initializing A Max Heap 

8 

9 

7 

6 3 

8 4 

7 

7 2 

11 

10 

5 

Done. 

1 



Time Complexity 

8 7 

6 3 

4 

7 

7 10 

11 

5 

2 

9 

8 

1 
Height of heap = h. 

Number of subtrees with root at level j is <= 2 j-1. 

Time for each subtree is O(h-j+1). 



Complexity 
Time for level j subtrees is <= 2j-1(h-j+1) = t(j). 

Total time is t(1) + t(2) + … + t(h-1) = O(n). 

 

 

Programming:  

    Write an algorithm to initialize a Max Heap with C++. 

 



Leftist Trees 

Linked binary tree. 
Can do everything a heap can do and in the

 same complexity. 
§  insert 
§  remove min (or max) 
§  initialize 

Can meld two leftist tree priority queues in
 O(log n) time. 



Extended Binary Trees 

Start with any binary tree and add an
 external node wherever there is an
 empty subtree. 

Result is an extended binary tree. 



A Binary Tree 



An Extended Binary Tree 

number of external nodes is n+1 



The Function s() 

For any node x in an extended binary tree,
 let s(x) be the length of a shortest path
 from x to an external node in the subtree
 rooted at x. 

 



s() Values Example 



0 0 0 0 

0 0 

0 0

0

0

1 1 1 

2 1 1 

2 1 

2 

s() Values Example 



Properties Of s() 

If x is an external node, then s(x) = 0. 
 
Otherwise, 

s(x) = min {s(leftChild(x)), 
               s(rightChild(x))} + 1 



Height Biased Leftist Trees 

A binary tree is a (height biased) leftist tree
 iff for every internal node x,
 s(leftChild(x)) >= s(rightChild(x)) 



A Leftist Tree 

0 0 0 0 

0 0 

0 0

0

0

1 1 1 

2 1 1 

2 1 

2 



Leftist Trees – Property 1 

In a leftist tree, the rightmost path is a
 shortest root to external node path and
 the length of this path is s(root). 



A Leftist Tree 

0 0 0 0 

0 0 

0 0

0

0

1 1 1 

2 1 1 

2 1 

2 

Length of rightmost path is 2. 



Leftist Trees—Property 2 

The number of internal nodes is at least 
2s(root) - 1 

Because levels 1 through s(root) have no
 external nodes. 



A Leftist Tree 

0 0 0 0 

0 0 

0 0

0

0

1 1 1 

2 1 1 

2 1 

2 

Levels 1 and 2 have no external nodes. 



Leftist Trees—Property 3 

Length of rightmost path is O(log n), where
 n is the number of (internal) nodes in a
 leftist tree. 

 
Property 2 => 

§  n >= 2s(root) – 1 => s(root) <= log2(n+1) 
Property 1 => length of rightmost path is

 s(root). 



Leftist Trees As Priority Queues 

Min leftist tree … leftist tree that is a min tree. 

Used as a min priority queue. 

Max leftist tree … leftist tree that is a max tree. 

Used as a max priority queue. 



A Min Leftist Tree 

8 6 9 

6 8 5 

4 3 

2 



Some Min Leftist Tree Operations 

put 

removeMin() 

meld() 

initialize() 

put() and removeMin() use meld(). 



Put Operation 
put(7) 

8 6 9 

6 8 5 

4 3 

2 

Create a single node min leftist tree. 7 

Meld the two min leftist trees. 



Remove Min 

8 6 9 

6 8 5 

4 3 

2 

Remove the root. 



Remove Min 

8 6 9 

6 8 5 

4 3 

2 

Remove the root. 

Meld the two subtrees. 



Meld Two Min Leftist Trees 

8 6 9 

6 8 5 

4 3 

6 

HOW to get logarithmic performance? 

 Traverse only the rightmost paths  



Meld Two Min Leftist Trees 

8 6 9 

6 8 5 

4 3 

6 

Meld right subtree of tree with smaller root and
 all of other tree. 



Meld Two Min Leftist Trees 

8 6 9 

6 8 5 

4 3 

6 

Meld right subtree of tree with smaller root and all of
 other tree. 



Meld Two Min Leftist Trees 

8 6 

6 8 

4 6 

Meld right subtree of tree with smaller root and all of
 other tree. 



Meld Two Min Leftist Trees 
8 6 

Meld right subtree of tree with smaller root and all of
 other tree. 

Right subtree of 6 is empty. So, result of melding right
 subtree of tree with smaller root and other tree is the
 other tree. 



Meld Two Min Leftist Trees 

Swap left and right subtree if s(left) < s(right). 

Make melded subtree right subtree of smaller root. 

8 6 

6 

8 

6 

8 



Meld Two Min Leftist Trees 

8 6 

6 6 

4 

8 8 6 

6 

4 6 

8 

Make melded subtree right subtree of smaller root. 

Swap left and right subtree if s(left) < s(right). 



Meld Two Min Leftist Trees 

9 

5 

3 

Swap left and right subtree if s(left) < s(right). 

Make melded subtree right subtree of smaller root. 

8 6 

6 6 

4 

8 



Meld Two Min Leftist Trees 

9 

5 

3 

8 6 

6 6 

4 

8 



Initializing In O(n) Time 
•  Create n single-node min leftist trees and

 place them in a FIFO queue. 
•  Repeatedly remove two min leftist trees from

 the FIFO queue, meld them, and put the
 resulting min leftist tree into the FIFO queue. 

•  The process terminates when only 1 min leftist
 tree remains in the FIFO queue. 

•  Analysis is the same as for heap initialization.        



Arbitrary Remove 

Remove element in node pointed at by x. 

L

x 
A

B
R

x = root => remove min. 



Arbitrary Remove, x != root 

L

x 
A

B
R

Make L right subtree of p. 

Adjust s and leftist property on path from p to root. 

Meld with R. 

p 



Selection Trees/ 
Tournament Trees 

Polynomial addition (no equal items) 
 Merge: 2 sorted lists à one 
  2 items : smaller one selected 

K polynomials? 
 Merge: k sorted lists à one 
  k items : smallest one selected 
  HOW? 



Selection Trees/ 
Tournament Trees 

Winner trees. 
Loser Trees. 



World Cup Knockout 
16 teams 
8 1/8 matches à 8 winners 
4 1/4 matches à 4 winners 
2 semifinal matches à 2 winners 
1 final match à  World Cup Championship 
 
Winner Tree: A simulation 
 



Winner Trees 
Complete binary tree with n external

 nodes and n - 1 internal nodes. 
External nodes represent tournament

 players. 
Each internal node represents a match

 played between its two children;
 the winner of the match is stored at
 the internal node. 

Root has overall winner. 



Winner Tree For 16 Players 

player match node 



Winner Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

Smaller element wins => min winner tree. 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 



Winner Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

height is log2 n (excludes player level) 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 



Complexity Of Initialize 

•  O(1) time to play match at each match node. 
•  n - 1 match nodes. 
•  O(n) time to initialize n player winner tree. 



Applications 

Sorting. 
 
Put elements to be sorted into a winner

 tree. 
Repeatedly extract the winner and

 replace by a large value. 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 

Sorted array. 
1 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 5 3 2 4 2 5 

3 1 2 2 

1 2 

1 

Sorted array. 
1 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 2 4 2 5 

3 2 2 

1 2 

1 

Sorted array. 
1 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 2 4 2 5 

3 2 2 

3 2 

1 

Sorted array. 
1 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 2 4 2 5 

3 2 2 

3 2 

2 

Sorted array. 
1 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 2 4 2 5 

3 2 2 

3 2 

2 2 

2 

Sorted array. 
1 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 2 5 

3 2 2 

3 2 

2 2 

2 

Sorted array. 
1 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 2 5 

3 4 2 

3 2 

2 2 

2 

Sorted array. 
1 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 2 5 

3 4 2 

3 2 

2 2 

2 

Sorted array. 
1 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 2 5 

3 4 2 

3 2 

2 2 

2 

Sorted array. 
1 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 2 5 

3 4 2 

3 2 

2 

Sorted array. 
1 2 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 5 5 

3 4 2 

3 2 

2 

Sorted array. 
1 2 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 5 5 

3 4 5 

3 2 

2 

Sorted array. 
1 2 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 5 5 

3 4 5 

3 4 

2 

Sorted array. 
1 2 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 5 5 

3 4 5 

3 4 

3 

Sorted array. 
1 2 2 



Sort 16 Numbers 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 

3 

5 3 6 4 5 5 

3 4 5 

3 4 

3 

Sorted array. 
1 2 2 3 



Time To Sort 

•  Initialize winner tree. 
§ O(n) time 

•  Remove winner and replay. 
§ O(log n) time 

•  Remove winner and replay n times. 
§ O(n log n) time 

•  Total sort time is O(n log n). 



Winner Tree Operations 

•  Initialize 
§ O(n) time 

•  Get winner 
§ O(1) time 

•  Remove/replace winner and replay 
§ O(log n) time 
§   more precisely Theta(log n) 



Replace Winner And Replay 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 

Replace winner with 6. 



Replace Winner And Replay 

4 3 6 8 6 5 7 3 2 6 9 4 5 2 5 8 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 

Replay matches on path to root. 



Replace Winner And Replay 

4 3 6 8 6 5 7 3 2 6 9 4 5 2 5 8 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 

Replay matches on path to root. 



Replace Winner And Replay 

4 3 6 8 6 5 7 3 2 6 9 4 5 2 5 8 

3 6 1 3 2 4 2 5 

3 1 2 2 

1 2 

1 

Opponent is player who lost last match played at this node. 



Loser Tree 

Each match node stores the match
 loser rather than the match winner. 



Min Loser Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 
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3 

8 



Min Loser Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

4 

6 

8 

3 

5 

1 

7 



Min Loser Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

4 

6 

8 

3 

5 

3 

7 

1 

6 

2 

9 



Min Loser Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 
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3 
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2 

8 

1 

6 

4 

9 



Min Loser Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 
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Min Loser Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 
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Min Loser Tree For 16 Players 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

4 

6 
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3 

5 

3 

7 

2 

5 

5 

8 

2 

6 

4 

9 



4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

4 

6 

8 

3 

5 

3 

7 

2 

5 

5 

8 

2 

6 

4 

9 

1 Winner 



Complexity Of Loser Tree
 Initialize 

•  One match at each match node. 
•  One store of a left child winner. 
•  Total time is O(n). 
•  More precisely Theta(n). 



Winner 

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8 

4 

6 

8 

3 

5 

3 

7 

2 

5 

5 

8 

2 

6 

4 

9 

1 

Replace winner with 9 and replay matches. 

9 

5 

9 

3 

3 

2 



Complexity Of Replay 

•  One match at each level that has a match
 node. 

•  O(log n) 
•  More precisely Theta(log n). 



•  class LoserTree { 
•  public: 
•     LoserTree(int k);    
•     void Build( );    
•     …      
•  private: 
•     int k;  
•     int *l;     
•     Rec *buf;   
•     int getKey(int i);   
•     int getIndex(int i); 
•  }; 



•  LoserTree::LoserTree(int k) { 
•     l = new int[k];    
•     buf = new Rec[k];    

•  }  



•  void LoserTree::Build( ) {   
•     int i; 
•     for (i = k – 1; i > 0; i--) 
•        if (getKey(2*i) > getKey(2*i + 1)  
•           l[i] = getIndex(2*i + 1);  
•        else l[i] = getIndex(2*i);   
•     l[0] = l[1];   
•     for (i = 1; i < k; i++) 
•        if (l[i] == getIndex(2*i) l[i] = getIndex(2*i + 1);  
•        else l[i] = getIndex(2*i);    
•  } 



•  int LoserTree::getKey(int i) { 
•     if (i < k) return buf[l[i]].key; else return

 buf[i - k].key; 
•  } 
•  int LoserTree::getIndex(int i) { 
•     if (i < k) return l[i]; else return (i – k); 
•  } 



More Tournament Tree
 Applications 

•  k-way merging of runs during an external
 merge sort 

•  Truck loading 



Truck Loading 

 
§  n packages to be loaded into trucks 
§  each package has a weight 
§  each truck has a capacity of c tons 
§ minimize number of trucks 



Truck Loading 

n = 5 packages 
weights [2, 5, 6, 3, 4]  
truck capacity c = 10 
 
Load packages from left to right. If a package

 doesn’t fit into current truck, start loading a
 new truck. 



Truck Loading 

n = 5 packages 
weights [2, 5, 6, 3, 4]  
truck capacity c = 10 

truck1 = [2, 5] 
truck2 = [6, 3] 
truck3 = [4] 
uses 3 trucks when 2 trucks suffice 



Truck Loading 

n = 5 packages 
weights [2, 5, 6, 3, 4]  
truck capacity c = 10 

truck1 = [2, 5, 3] 
truck2 = [6, 4] 



Bin Packing 

 
•  n items to be packed into bins 
•  each item has a size 
•  each bin has a capacity of c 
• minimize number of bins 



Bin Packing 

Truck loading is same as bin packing. 
Truck is a bin that is to be packed (loaded). 
Package is an item/element. 

Bin packing to minimize number of bins is NP-hard. 
Several fast heuristics have been proposed. 



Bin Packing Heuristics 

•  First Fit. 
§  Bins are arranged in left to right order. 
§  Items are packed one at a time in given order. 
§  Current item is packed into leftmost bin into

 which it fits. 
§  If there is no bin into which current item fits,

 start a new bin. 



First Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Pack red item into first bin. 



First Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Pack blue item next. 

Doesn’t fit, so start a new bin. 



First Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 



First Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Pack yellow item into first
 bin. 



First Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Pack green item. 

Need a new bin. 



First Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Not optimal. 

2 bins suffice. 



Bin Packing Heuristics 

•  First Fit Decreasing. 
§  Items are sorted into decreasing order. 
§  Then first fit is applied. 



Bin Packing Heuristics 

•  Best Fit. 
§  Items are packed one at a time in given order. 
§  To determine the bin for an item, first

 determine set S of bins into which the item fits. 
§  If S is empty, then start a new bin and put item

 into this new bin. 
§ Otherwise, pack into bin of S that has least

 available capacity. 



Best Fit Example 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Pack red item into first
 bin. 



Best Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Pack blue item next. 

Doesn’t fit, so start a
 new bin. 



Best Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 



Best Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Pack yellow item into
 second bin. 



Best Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Pack green item
 into first bin. 



Best Fit 

n = 4 
weights = [4, 7, 3, 6] 
capacity = 10 

Optimal
 packing. 



Implementation Of Best Fit 

•  Use a dynamic dictionary in which the elements
 are of the form (available capacity, bin index). 

•  Pack an item whose requirement is s. 
§  Find a bin with smallest available capacity >= s. 
§  Reduce available capacity of this bin by s. 

•  May be done by removing old pair and inserting new
 one. 

§  If no such bin, start a new bin. 
•  Insert a new pair into the dictionary. 

 
 



Bin Packing Heuristics 

•  Best Fit Decreasing. 
§  Items are sorted into decreasing order. 
§  Then best fit is applied. 



Performance 

•  For first fit and best fit: 
Heuristic Bins <= (17/10)(Minimum Bins) + 2 
 
 

•  For first fit decreasing and best fit
 decreasing: 
Heuristic Bins <= (11/9)(Minimum Bins) + 4 



Complexity Of First Fit 

Use a max tournament tree in which
 the players are n bins and the value
 of a player is the available capacity
 in the bin. 

 
O(n log n), where n is the number of

 items. 
 



•  Exercises: P301-1,4 



Forests 

•  Definition:  
§ A forest is a set of n≥0 disjoint trees 
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Definition: 

If T1,…, Tn is a forest of trees, then the binary tree
 corresponding to it , denoted by B(T1,…, Tn ), 

(1)  is empty if n=0 

(2)  has root equal to root(T1); has left subtree equal
 to B(T11,…, T1m ), where T11,…, T1m are the
 subtrees of root(T1); and has right subtree B(T2,…,
 Tn ). 

Transforming a Forest into a
 Binary Tree 
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•  Left child à first child 
•  Right childà Sibling 

Transforming a Forest into a
 Binary Tree 



Transform a Binary Tree to a Forest 
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Let T be the corresponding binary tree of a forest
 F. 
Visiting the nodes of F in forest preorder is defined
 as: 
(1)  If F is empty then return. 
(2)  Visit the root of the first tree of F. 
(3)  Traverse the subtrees of the first tree in forest
 preorder. 
(4)  Traverse the remaining trees of F in forest
 preorder. 

Forest Traversals 
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Visiting the nodes of F in forest inorder is defined
 as: 
(1)  If F is empty then return. 
(2)  Traverse the subtrees of the first tree in forest
 inorder.  
(3)  Visit the root of the first tree of F. 
(4)  Traverse the remaining trees of F in forest
 inorder. 
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Visiting the nodes of F in forest postorder is defined
 as: 

(1)  If F is empty then return. 
(2) Traverse the subtrees of the first tree in forest

 postorder.  
(3) Traverse the remaining trees of F in forest

 postorder.  
(4) Visit the root of the first tree of F. 
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In level-order traversal of F 
Nodes are visited by level 
Beginning with the roots of each trees in F 
Within each level, from left to right. 
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Exercises: P304-3.  



Set Presentation 

•  Assume:  
•   Elements of the sets are the numbers 0, 1, 2,

 …, n-1  (might be thought as indices). 
•   For any two sets Si, Sj, i≠j, Si∩Sj = ∅. 
•  Operations: 

§ Disjoint set union Si∪Sj . 
§  Find(i)---find the set containing i. 



Union-Find Problem 

•  A union operation combines two sets into one. 
§  Each of the n elements is in exactly one set at any

 time. 
•  A find operation identifies the set that contains

 a particular element. 



Using Arrays And Chains 

•  Array 
§ Union 
§  Find 

•  Chains 
§ Union 
§  Find 



A Set As A Tree 
•  S = {2, 4, 5, 9, 11, 13, 30} 
•  Some possible tree representations: 

4

2 9 11 30 5 13 
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Result Of A Find Operation 
•  find(i) is to identify the set that contains element i. 
•  In most applications of the union-find problem, the

 user does not provide set identifiers. 
•  The requirement is that find(i) and find(j) return

 the same value iff elements i and j are in the same
 set. 

4

2 9 11 30 5 13 

find(i) will return the element that is in the tree root. 



Strategy For find(i) 

•  Tree traversal from the root? O(n) 
•  Start at the node that represents element i and

 climb up the tree until the root is reached. 
•  Return the element in the root. 
•  To climb the tree, each node must have a parent

 pointer. 
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Trees With Parent Pointers 
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Possible Node Structure 

•  Use nodes that have two fields: element and
 parent. 
§ Use an array table[] such that table[i] is a

 pointer to the node whose element is i. 
§  To do a find(i) operation, start at the node given

 by table[i] and follow parent fields until a node
 whose parent field is null is reached. 

§  Return element in this root node. 



Example 
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table[] 
0 5 10 15 

(Only some table entries are shown.) 



Better Representation 

•  Use an integer array parent[] such that
 parent[i] is the element that is the parent of
 element i. 
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parent[] 
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2 9 13 13 4 5 0 



•  class Sets {   
•  public: 
•      // Set operations 
•  private: 
•      int  *parent; 
•      int  n; // number of set elements   
•  }; 
•  Sets::Sets (int numberOfElements) 
•  { 
•      if (numberOfElements < 2) throw “Must have at least 2 

elements.”; 
•      n=numberOfElements;    
•      parent=new int[n]; 
•      fill(parent, parent+n, -1); 
•  } 



Union Operation 

•  union(i,j) 
§  i and j are the roots of two different trees, i != j. 

•  To unite the trees, make one tree a subtree
 of the other. 
§  parent[j] = i 



Union Example 

•  union(7,13) 
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The Simple Find Method 

int Sets::SimpleFind (int i) 
{ //find the root of the tree containing element i. 
    while (parent[i]>=0) i=parent[i];    
    return i; 
} 



The Simple Union Method 

void Sets::SimpleUnion (int j, int i) 
{ // Replace the disjoint sets with roots i and j, 
i!=j with their 
  // union 
    parent[i] = j;   
} 



Time Complexity Of union() 

•  O(1) 



Time Complexity of find() 

•  Tree height may equal number of elements in
 tree. 
§  union(2,1), union(3,2), union(4,3), union(5,4)… 

2 
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So complexity is O(u). 



u Unions and f Find Operations 

•  O(u + uf) = O(uf) 
•  Time to initialize parent[i] = 0 for all i is

 O(n). 
•  Total time is O(n + uf). 



Smart Union Strategies 
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•  union(7,13) 

•  Which tree should become a subtree of the other? 



Height Rule 
•  Make tree with smaller height a subtree of the

 other tree. 
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union(7,13) 



Weight Rule 
•  Make tree with fewer number of elements a subtree

 of the other tree. 
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union(7,13) 



Implementation 

•  Root of each tree must record either its
 height or the number of elements in the
 tree. 

•  When a union is done using the height rule,
 the height increases only when two trees of
 equal height are united. 

•  When the weight rule is used, the weight of
 the new tree is the sum of the weights of
 the trees that are united. 

 
 



void Sets::WeightedUnion (int i, int j) 
{ // Union sets with roots i and j, i≠j, weighting rule 
  // parent[i] = - count[i] and parent[j] = - count[j] 
    int temp = parent[i] + parent[j]; 
    if (parent[i] > parent[j]) {   // i has fewer nodes 
        parent[i] = j; 
        parent[j] = temp;  
     } 
    else {    // j has fewer nodes 
        parent[j] = i;  
        parent[i] = temp;   
    } 
} 



Height Of A Tree 

•  Suppose we start with single element trees
 and perform unions using either the height
 or the weight rule. 

•   Lemma 5.5 The height of a tree with m
 elements is at most floor (log2m) + 1. 



•  Lemma 5.5 The height of a tree with m elements
 is at most floor (log2m) + 1.  

•  Proof  by induction: 

§ m = 1, it is true. 

§ Assume it is true for all trees with i ≤ m-1 
nodes. 

§ For i = m, let T be a tree with m nodes created 
by WeightedUnion.   

§ Consider the last union performed, 

• Union(k, j).  



Let a be the number of nodes in 
tree j and m-a that in tree k. 
without loss of generality, 
assume 1 ≤ a ≤ m/2. Then the 
height of T is either the same 
as that of k or is 1 + that of j. 

k 

j 

a  

m-a  

m-a ≥ m/2 ≥ a 

If the former is the case, the height of T ≤ ⎩log2 (m-a)⎭
+1 ≤ ⎩log2 m⎭+1. 

If the latter is the case, the height of T ≤ ⎩log2 a⎭+2 ≤ 
⎩log2 m/2⎭+2 ≤ ⎩log2 m⎭+1. 



•  The time to process a find is at most
 O(log n) in a tree of n nodes 

•  If an intermixed sequence of u-1 union
 and f find is to be done 

•  The worst case time is O(u + f log u).  



Sprucing Up The Find Method 

•  find(1) 
•  Do additional work to make future finds easier. 
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a, b, c, d, e, f, and g are subtrees 
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Further improvement in the find algorithm. 

Definition [Collapsing rule] :  

If j is a node on the path from i to its root and 
parent[i] ≠ root(i), 

then set parent[j] to root(i). 

Path Collapsing/Path Compaction 



Path Collapsing/Path Compaction 
•  Make all nodes on find path point to tree root. 
•  find(1) 
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a, b, c, d, e, f, and g are subtrees 

 Makes two passes up the tree. 
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int Sets::CollapsingFind (int i ) 
{ // Find the root of tree containing element i. Use the  
  // collapsing rule to collapse all nodes from i to the root. 
    // find the root  
    for (int r = i; parent[r] >= 0; r = parent[r]); 
    while ( i != r )  { 
         int s = parent[i];  
         parent[i] = r;  
         i = s;  
    } 
    return r; 
} 



Path Splitting 
•  Nodes on find path point to former grandparent. 
•  find(1) 
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a, b, c, d, e, f, and g are subtrees 

 Makes only one pass up the tree. 



Path Halving 
•  Parent pointer in every other node on find path is

 changed to former grandparent. 
•  find(1) 
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a, b, c, d, e, f, and g are subtrees 

 Changes half as many pointers. 



      equivalence classes   ⇔    disjoint sets 

Initially, parent[i] = -1, 0 ≤i ≤n-1. 
To process i ≡ j,  
Let x = find(i), y = find(j)   --- 2 finds 
If x ≠ y then union(x, y)  --- at most 1 union 

Thus if we have n elements and m equivalence pairs, we
 needs 2m finds and min {n-1, m} unions. The total time
 is O(n+2m α(n+2m,n)).  

Application to Equivalent Classes 



Example: 
n = 12, process equivalence pairs:  
0 ≡ 4, 3 ≡ 1, 6 ≡10, 8 ≡ 9, 7≡ 4, 6 ≡ 8, 3 ≡ 5, 2 ≡ 11,  
11 ≡ 0 

[-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1] 

(a) Initial trees 

0 1 2 3 4 5 6 7 8 9 10 11 
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[-2] [-1] [-2] [-1] [-2] [-1] [-2] [-1] 

(b) After processing 0 ≡ 4, 3 ≡ 1, 6 ≡10, and 8 ≡ 9 
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11 
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[-3] [-3] [-4] [-2] 

(c) After processing 7 ≡ 4, 6 ≡ 8, 3 ≡ 5, and 2 ≡ 11 
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[-5] [-3] [-4] 

                (d) After processing 11 ≡ 0 
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Thinking …… 

•  Application 
§  Coding: msg à 101011100001 

•  What we have 
§ Dictionary of Message: n words 
§  Every word wi has an average frequency fi

 

•  Requirement 
§  For an message, minimize its code length 



Problem formulation 

•  n elements 
•  Each element has a length li 

•  Each element has a frequency fi 

•  Binary coding 
§  unfixed length  

•  Wanted: 
§  Larger fi à smaller li 

§ Min(Σ(li*fi)) 



Huffman Tree 

•  Binary tree with n leaves 

•  Frequency: leaf value 
•  Coding length 

§ Distance from the root 
•  Wanted: 

§  Larger fi à deeper level 

§ Min(Σ(li*fi)) 
•  Word coding…… 



Huffman Tree 

•  ADT 
•  Algorithm 

§  Tree Construction 
§  Coding 
§  decoding 



Building a Tree 
Scan the original text 

 Eerie eyes seen near lake. 
• What characters are present? 

E  e  r  i space   
y s n a r l k . 



Building a Tree 
Scan the original text 

Eerie eyes seen near lake. 
•  What is the frequency of each character in the

 text? 
Char Freq.  Char Freq.  Char Freq.   E   1    y   1     k  1   e   8    s   2     .  1    r   2    n   2        i   1    a   2   space  4    l   1 



Building a Tree 
Prioritize characters 

•  Create binary tree nodes with character and
 frequency of each character 

•  Place nodes in a priority queue 
§  The lower the occurrence, the higher the

 priority in the queue 



Building a Tree 

•  The queue after inserting all nodes 

•  Null Pointers are not shown 
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Building a Tree 

•  While priority queue contains two or more nodes 
§  Create new node 
§ Dequeue node and make it left subtree 
§ Dequeue next node and make it right subtree 
§  Frequency of new node equals sum of frequency of left

 and right children 
§  Enqueue new node back into queue 



Building a Tree 
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What is happening to the characters with a low
 number of occurrences? 
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After enqueueing
 this node there
 is only one node
 left in priority
 queue. 



Building a Tree 

Dequeue the single node
 left in the queue. 

This tree contains the new
 code words for each
 character. 

Frequency of root node
 should equal number of
 characters in text. 
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Eerie eyes seen near lake.      26 characters 



•  Write Path Splitting /Path Halving
 algorithms. 

•  Exercises: P316-3 


