Advanced Data Structures

Succinct Data Structures

Arbitrary Ordered Trees

- Use parenthesis notation
- Represent the tree

- As the binary string $(((())))((())()()$: traverse tree as " $\left($ " for node, then subtrees, then ")"
- 2 Bits per node

Space for trees

- The space used by the tree structure could be the dominating factor in some applications.
	- $-$ Eg. More than half of the space used by a standard suffix tree representation is used to store the tree structure.
- Standard representations of trees support very few operations. To support other useful queries, they require a large amount of extra space.

Standard representation

Binary tree: each node has two pointers to its left and right children

An n-node tree takes $2n$ pointers or $2n \lg n$ bits

Supports finding left child or right child of a node (in constant time).

For each extra operation (eg. parent, subtree size) we have to pay, roughly, an additional n lg n bits.

Can we improve the space bound?

• There are less than 2^{2n} distinct binary trees on n nodes.

• 2n bits are enough to distinguish between any two different binary trees.

• Can we represent an **n** node binary tree using 2n bits?

Heap-like notation for a binary tree

Add external nodes

Label internal nodes with a 1 and external nodes with a 0

Write the labels in level order

11110110100100000

One can reconstruct the tree from this sequence

An n node binary tree can be represented in $2n+1$ bits.

What about the operations?

Heap-like notation for a binary tree 8 $4 \times 5 = 6$ 7 2×3 1 9 14 15 16 17 $10 - 11 - 12 - 13$ 1 7 8 $4\sqrt{5}$ 6 $\frac{1}{3}$ parent(x) = $[\lfloor x/2 \rfloor]$ $left child(x) = [2x]$ right $child(x) = [2x+1]$ $x \rightarrow x$: # 1's up to x $x \rightarrow x$: position of x-th 1

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8

Rank/Select on a bit vector

Given a bit vector **B**

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 B: 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 1

rank₁(i) = # 1's up to position i in B

select₁(i) = position of the i-th 1 in B (similarly rank₀ and select₀)

Given a bit vector of length n, by storing an additional $o(n)$ -bit structure, we can support all four operations in constant time.

rank₁(5) = 3 select₁(4) = 9 rank $_0(5) = 2$ select₀(4) = 7

An important substructure in most succinct data structures.

Have been implemented.

Binary tree representation

• A binary tree on n nodes can be represented using $2n+o(n)$ bits to support:

- parent
- $-$ left child
- $-$ right child

in constant time.

-11111011100100000

Heap-like Notation for a Binary Tree

Store vector 1 1 1 1 0 1 1 1 0 0 1 0 00000 length2n+1 1 2 3 4 5 6 7 8 9 0 1 2 34567 $1 2 3 4 5 6 7 8$

Ordered trees

A rooted ordered tree (on n nodes):

Navigational operations:

- parent(x) = a
- first child(x) = b
- next sibling(x) = c

Other useful operations:

- $-degree(x) = 2$
- subtree $size(x) = 4$

Ordered trees

- A binary tree representation taking $2n+o(n)$ bits that supports parent, left child and right child operations in constant time.
- There is a one-to-one correspondence between binary trees and rooted ordered trees
- Gives an ordered tree representation taking $2n+o(n)$ bits that supports first child, next sibling (but not parent) operations in constant time.
- We will now consider ordered tree representations that support more operations.

Level-order degree sequence

Write the degree sequence in level order $\frac{3}{4}$

3 2 0 3 0 1 0 2 0 0 0 0

But, this still requires $n \lg n$ bits

Solution: write them in unary

11101100111001001100000

Takes 2n-1 bits

A tree is uniquely determined by its degree sequence

Supporting operations

Add a dummy root so that each node has a corresponding 1

1011101100111001001100000 1 2 3 4 5 6 7 8 9 10 11 12

node **k** corresponds to the k -th 1 in the bit sequence

parent(k) = # 0's up to the k-th 1

children of k are stored after the k -th 0

supports: parent, i-th child, degree

(using rank and select)

