
BACKWARD SEARCH
FM-INDEX

(FULL-TEXT INDEX IN MINUTE SPACE)

¢  Combine Text compression with indexing
 (discard original text).

¢  Count and locate P by looking at only a small portion of
the compressed text.

¢  Do it efficiently:
�  Time: O(p)
�  Space: O(n Hk(T)) + o(n)

2

¢  Exploit the relationship between the Burrows-Wheeler
Transform and the Suffix Array data structure.

¢  Compressed suffix array that encapsulates both the
compressed text and the full-text indexing information.

¢  Supports two basic operations:
�  Count – return number of occurrences of P in T.
�  Locate – find all positions of P in T.

3

mississippi#
ississippi#m
ssissippi#mi
sissippi#mis

sippi#missis
ippi#mississ
ppi#mississi
pi#mississip
i#mississipp
#mississippi

ssippi#missi
issippi#miss Sort the rows

p i#mississi p
p pi#mississ i
s ippi#missi s
s issippi#mi s
s sippi#miss i
s sissippi#m i

i ssippi#mis s

m ississippi #
i ssissippi# m

i ppi#missis s
i #mississip p
mississipp i

L F •  Every column is a permutation of T.

•  Given row i, char L[i] precedes F[i] in

original T.

•  Consecutive char’s in L are adjacent

to similar strings in T.

•  Therefore – L usually contains long

runs of identical char’s.

4

1.  Find F by sorting L
2.  First char of T?

 m

3.  Find m in L
4.  L[i] precedes F[i] in T. Therefore we get

 mi
5.  How do we choose the correct i in L?

�  The i’s are in the same order in L and F
�  As are the rest of the char’s

6.  i is followed by s: mis
7.  And so on….

F

Reminder: Recovering T from L

I
I
I
I
m
p
p
s
s
s
s

I
P
s
s
m

p
I
s
s
I
I

L

5

¢  Backward-search algorithm
¢  Uses only L (output of BWT)
¢  Relies on 2 structures:

�  C[1,…,|Σ|] : C[c] contains the total number of text chars in T which are
alphabetically smaller than c (including repetitions of chars)

�  Occ(c,q): number of occurrences of char c in prefix L[1,q]

Example

•  C[] for T = mississippi#

•  occ(s, 5) = 2
•  occ(s,12) = 4

 Occ Rank

8 6 5 1

≡

i m p s

6

1
2
3
4
5
6
7
8
9
10
11
12

¢  Works in p iterations, from p down to 1

¢  Remember that the BWT matrix rows = sorted suffixes of T
�  All suffixes prefixed by pattern P, occupy a continuous set of rows
�  This set of rows has starting position First
�  and ending position Last
�  So, (Last – First +1) gives total pattern occurrences

¢  At the end of the i-th phase, First points to the first row prefixed by P[i,p],
and Last points to the last row prefiex by P[i,p].

c = ‘m’
i = 1

P = msi msi i = 3
c = ‘i’

i = 2
c = ‘s’ msi msi

7

fr
occ=2
[lr-fr+1]

SUBSTRING SEARCH IN T (COUNT THE PATTERN OCCURRENCES)

#mississipp
i#mississip
ippi#missis
issippi#mis
ississippi#
mississippi
pi#mississi
ppi#mississ
sippi#missi
sissippi#mi
ssippi#miss
ssissippi#m

i
p
s
s
m

p
i
s
s
i
i

L

mississippi

0
i 1
m 5
p 6
S 8

C
P = si

First step

fr

lr Inductive step: Given fr,lr for P[j+1,p]

❴  Take c=P[j]

P[j]

Find the first c in L[fr, lr]

 Find the last c in L[fr, lr]

�  L-to-F mapping of these chars

}
lr

rows prefixed
by char “i” s

s

unknown

Occ() is enough 8

8 6 5 1
i m p s

C[] =

¢  P = pssi

�  i =

�  c =

�  First =

�  Last =

�  (Last – First + 1) =

4

‘i’

C[‘i’] + 1 = 2

C[‘i’ + 1] = C[‘m’] = 5

4

First

Last
‘s’

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9

C[‘s’] + Occ(‘s’,5) = 8+2 = 10

2

3

9

1
2
3
4
5
6
7
8
9
10
11
12

8 6 5 1
i m p s

C[] =

¢  P = pssi

�  i =

�  c =

�  First =

�  Last =

�  (Last – First + 1) =

First
Last

‘s’

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9

C[‘s’] + Occ(‘s’,5) = 8+2 = 10

2

3

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11

C[‘s’] + Occ(‘s’,10) = 8+4 = 12

2

10

1
2
3
4
5
6
7
8
9
10
11
12

8 6 5 1
i m p s

C[] =

¢  P = pssi

�  i =

�  c =

�  First =

�  Last =

�  (Last – First + 1) = First
Last

‘s’

2

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11

C[‘s’] + Occ(‘s’,10) = 8+4 = 12

2

‘p’

C[‘p’] + Occ(‘p’,10) +1 = 6+2+1 = 9

C[‘p’] + Occ(‘p’,12) = 6+2 = 8

0

1

11

1
2
3
4
5
6
7
8
9
10
11
12

ASSIGNMENT 2
¢ Create a simple search program that implements

 BWT backward search, which can efficiently
 search a BWT encoded file.

¢ The program also has the capability to encode a
 text file to a BWT-coded file

¢ The program also has the capability to decode
 the BWT encoded file back to its original file in
 a lossless manner.

¢ Text is delimited by new lines.
12

ASSIGNMENT 2
¢ Your C/C++ program, called bwtsearch

�  Bwtsearch -e fileToBeEncoded outputFile
�  Bwtsearch -d fileToBeDecoded

¢ standard output
�  Bwtsearch -s fileEncoded “queryString”

¢ Output all the lines contain “queryString”
¢ Highlight “queryString” if capable
¢ The search results need to be sorted according to

 their line numbers.

13

ASSIGNMENT 2
¢ The first four bytes (an int) of each given BWT encoded

 file are reserved for storing the position (zero-based) of
 the BWT array that contains the last character. As a
 result, a given BWT encoded file in this assignment is 4
 bytes larger than its original text file.

¢ For example, if the original text file contains only
 banana$, then the BWT encoded file will be 11 bytes
 long. The first four bytes contain the integer 4 and the
 rest of the bytes contain annb$aa. i.e., The last character
 is at position 4 (= the fifth character since it is zero
-based).

14

ASSIGNMENT 2
¢ Since each line is delimited by a newline

 character, your output will naturally be
 displayed as one line (ending with a '\n') for
 each match. No line will be output more than
 once, i.e., if there are multiple matches in one
 line, that line will only be output once.

15

ASSIGNMENT 2
¢ Your solution can write out one external index file.
¢ You may assume that the index file will not be deleted

 during all the tests for a given BWT file, and all the
 test BWT files are uniquely named. Therefore, to save
 time, you only need to generate the index file when it
 does not exist yet.

16

LECTURE 5
¢  Compressed suffix array / BWT

Slides modified from the original Makinen & Navarro’s

A BIG PATRICIA TRIE / SUFFIX TRIE

¢  Given a large text file; treat it as bit vector
¢  Construct a trie with leaves pointing to unique locations in text

 that “match” path in trie (paths must start at character
 boundaries)

¢  Skip the nodes where there is no branching

1 0 0 0 1 1

0 1

0

1

ARBITRARY ORDERED TREES
¢  Use parenthesis notation
¢  Represent the tree

¢  As the binary string (((())())((())()())): traverse tree as
 “(“ for node, then subtrees, then “)”

¢  2 Bits per node

SPACE FOR TREES
¢ The space used by the tree structure could be the

 dominating factor in some applications.

�  Eg. More than half of the space used by a standard
 suffix tree representation is used to store the tree
 structure.

¢ Standard representations of trees support very few
 operations. To support other useful queries, they
 require a large amount of extra space.

STANDARD REPRESENTATION
Binary tree: each node has two
pointers to its left and right children

An n-node tree takes
2n pointers or 2n lg n bits

Supports finding left child or right child of a node (in

 constant time).

For each extra operation (eg. parent, subtree size) we

 have to pay, roughly, an additional n lg n bits.

x

x x x x

x x x x

CAN WE IMPROVE THE SPACE
 BOUND?
¢ There are less than 22n distinct binary trees on n

 nodes.

¢  2n bits are enough to distinguish between any two
 different binary trees.

¢ Can we represent an n node binary tree using 2n
 bits?

HEAP-LIKE NOTATION FOR A BINARY
 TREE
 1

1 1 1

1 1

1

1

0 0 0 0

0 0 0 0

0

Add external nodes

Label internal nodes with a 1
and external nodes with a 0

Write the labels in level order

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0

One can reconstruct the tree from this sequence

An n node binary tree can be represented in 2n+1 bits.

What about the operations?

HEAP-LIKE NOTATION FOR A BINARY
 TREE

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8

5 7 6 4

3 2

1

9

17 16 15 14

13 12 11 10

1

8 7

6 5 4

3 2

1 2 3 4 5 6 7 8

parent(x) = [⌊x/2⌋]

left child(x) = [2x]

right child(x) = [2x+1]

x → x: # 1’s up to x

x → x: position of x-th 1

RANK/SELECT ON A BIT VECTOR
Given a bit vector B

rank1(i) = # 1’s up to position i in B

select1(i) = position of the i-th 1 in B

 (similarly rank0 and select0)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B: 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1

rank1(5) = 3
select1(4) = 9
rank0(5) = 2
select0(4) = 7

Given a bit vector of length n, by storing
an additional o(n)-bit structure, we can
support all four operations in constant time.

An important substructure in most succinct data structures.

Have been implemented.

BINARY TREE REPRESENTATION
¢ A binary tree on n nodes can be represented using

 2n+o(n) bits to support:

�  parent
�  left child
�  right child

 in constant time.

¢ 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0

28

HEAP-LIKE NOTATION FOR A BINARY TREE

Add external nodes
Enumerate level by level

Store vector 1 1 1 1 0 1 1 1 0 0 1 0 00000 length2n+1
 1 2 3 4 5 6 7 8 9 0 1 2 34567

1

1 1

1 1 1

1
1

0 0

0

0

0

0

0 0

0

1 2 3 4 5 6 7 8

1

2 3

4 5 6

7 8

ORDERED TREES
A rooted ordered tree (on n nodes):

Navigational operations:
- parent(x) = a
- first child(x) = b
- next sibling(x) = c

Other useful operations:
- degree(x) = 2
- subtree size(x) = 4

x

a

b

c

ORDERED TREES
¢ A binary tree representation taking 2n+o(n) bits that

 supports parent, left child and right child operations
 in constant time.

¢ There is a one-to-one correspondence between
 binary trees (on n nodes) and rooted ordered trees
 (on n+1 nodes).

¢ Gives an ordered tree representation taking
 2n+o(n) bits that supports first child, next sibling
 (but not parent) operations in constant time.

¢ We will now consider ordered tree representations
 that support more operations.

LEVEL-ORDER DEGREE SEQUENCE

3 2 0 3 0 1 0 2 0 0 0 0

But, this still requires n lg n bits

 Solution: write them in unary

 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0

 Takes 2n-1 bits

Write the degree sequence in level order 3

2 0 3

0 0

0 0 0

0 1 2

A tree is uniquely determined by its degree sequence

SUPPORTING OPERATIONS

1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12

Add a dummy root so that each node has a corresponding 1

1

2 3 4

5 6 7 8 9

10 11 12

parent(k) = # 0’s up to the k-th 1

children of k are stored after the k-th 0

supports: parent, i-th child, degree

(using rank and select)

node k corresponds to the
k-th 1 in the bit sequence

SIMPLE FM-INDEX
¢ Construct the Burrows-Wheeler-transformed

text bwt(T) [BW94].
¢ From bwt(T) it is possible to construct the

suffix array sa(T) of T in linear time.
¢ Instead of constructing the whole sa(T), one

can add small data structures besides bwt(T) to
simulate a search from sa(T).

BURROWS-WHEELER
TRANSFORMATION
¢ Construct a matrix M that contains as rows

all rotations of T.
¢ Sort the rows in the lexicographic order.
¢ Let L be the last column and F be the first

column.
¢ bwt(T)=L associated with the row number

of T in the sorted M.

EXAMPLE

pos 123456789
T = kalevala#

1:9 #kalevala
2:8 a#kaleval
3:6 ala#kalev
4:2 alevala#k
5:4 evala#kal
6:1 kalevala#
7:7 la#kaleva
8:3 levala#ka
9:5 vala#kale

==>
L = alvkl#aae, row 6

Exercise: Given L and the row
number, we know how to compute T.
What about sa(T)?

sa M L F

1 a
2 l
3 v
4 k
5 l
6 #
7 a
8 a
9 e

a
a
a
e
k
l
l
v

1:
2:
3:
4:
5:
6:
7:
8:
9:

9

a

8

l

7

a

6

v

5

e

4

l

3

a

2

1

k

sort
sa(T)

T-1=

L F

…

a
l
v
k
l

a
a
e

M
L

LF[i] 2 7 9 6 8 1 3 4 5
i 1 2 3 4 5 6 7 8 9

a l e v a l a

k a l e v a l

37

IMPLICIT LF[I]
¢ Ferragina and Manzini (2000) noticed the

following connection:
¢ LF[i]=CT[L[i]]+rankL[i](L,i)
� CT[c] :

¢ amount of letters 0,1,...,c-1 in L=bwt(T)
� rankc(L,i) :

¢ amount of letters c in the prefix L[1,i]

RANK/SELECT

001001001101
001112223445 rank1(L,i)

L

select1(L,j) 3 6 9 10 12

LF[i] 2 7 9 6 8 1 3 4 5
i 1 2 3 4 5 6 7 8 9 LF[7]=CT[a]+ranka(L,7)

 =1+2=3

1 a
2 l
3 v
4 k
5 l
6 #
7 a
8 a
9 e

a
a
a
e
k
l
l
v

1:
2:
3:
4:
5:
6:
7:
8:
9:

9

a

8

l

7

a

6

v

5

e

4

l

3

a

2

1

k

sort
sa(T)

T-1=

L F

…

a
l
v
k
l

a
a
e

M
L

40

RECALL: BACKWARD SEARCH ON
BWT(T)

¢ Observation: If [i,j] is the range of rows of M
that start with string X, then the range [i’,j’]
containing cX can be computed as

 i’ := CT[c]+rankc(L,i-1)+1,
 j’ := CT[c]+rankc(L,j).

BACKWARD SEARCH ON
BWT(T)...
¢ Array CT[1,σ] takes O(σ log |T|) bits.
¢ L=Bwt(T) takes O(|T| log σ) bits.
¢ Assuming rankc(L,i) can be computed in

constant time for each (c,i), the algorithm takes
O(|P|) time to count the occurrences of P in T.

RUN-LENGTH FM-INDEX

¢ We make the following changes to the previous FM-
index variant:
- L=Bwt(T) is replaced by a sequence S[1,n’] and
two bit-vectors B[1,|T|] and B’[1,|T|],
- Cumulative array CT[1,c] is replaced by
 CS[1,c],
- wavelet tree is build on S, and
- some formulas are changed.

RUN-LENGTH FM-INDEX...

c
c
c
a
a
g
g
a
t
t

L
1
0
0
1
0
1
0
1
1
0

B
c
a
g
a
t

S
1
0
1
1
0
0
1
0
1
0

B’
a
a
a
c
c
c
g
g
t
t

F
c
c
c
a
a
g
g
a
t
t

L

CHANGES TO FORMULAS

¢ Recall that we need to compute
CT[c]+rankc(L,i) in the backward search.

¢ Theorem: C[c]+rankc(L,i) is equivalent to
�  select1(B’,CS[c]+1+rankc(S,rank1(B,i)))-1,

when L[i] ≠ c,
�  select1(B’,CS[c]+rankc(S,rank1(B,i)))+

i-select1(B,rank1(B,i)), otherwise

EXAMPLE, L[I]=C

c
c
c
a
a
g
g
a
t
t

L
a
a
a
c
c
c
g
g
t
t

F LF[8]= select1(B’,CS[a]+ranka(S,rank1(B,8)))+
 8-select1(B,rank1(B,8))
 1

0
0
1
0
1
0
1
1
0

B
c
a
g
a
t

S
1
0
1
1
0
0
1
0
1
0

B’
= select1(B’,0+ranka(S,4))+8-select1(B,4)
 = select1(B’,0+2)+8-8
 = 3

¢  For more detail, read the original paper

EXERCISE
¢  ipsm$pisi
¢  111011111010

WHAT IS B’
B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

S
i
p
s

m
$
p
i
s

i

USUALLY B’ IS GIVEN TO SAVE
COMPUTATIONS

B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

B’
1
1
1
1
0
1
1
1
1
0
1
0

S
i
p
s

m
$
p
i
s

i

REVERSE BWT FROM ROW 6

B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

B’
1
1
1
1
0
1
1
1
1
0
1
0

S
i
p
s

m
$
p
i
s

i

REVERSE BWT

B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

B’
1
1
1
1
0
1
1
1
1
0
1
0

S[rank1(B, 6)]= $
S
i
p
s

m
$
p
i
s

i

REVERSE BWT

B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

B’
1
1
1
1
0
1
1
1
1
0
1
0

S
i
p
s

m
$
p
i
s

i

S[rank1(B, 6)]= $

LF[6]

= select1(B’, CS[$] + rank$(S, rank1(B, 6))) + 6 –
select1(B, rank1(B, 6)))

= select1(B’, 0 + rank$(S, 5)) + 6 – select1(B 5)

= 1 + 6 – 6 = 1

REVERSE BWT

B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

B’
1
1
1
1
0
1
1
1
1
0
1
0

S[rank1(B, 1)]= i

LF[1]

= select1(B’, CS[i] + ranki(S, rank1(B, 1))) + 1

– select1(B, rank1(B, 1)))

= select1(B’, 1 + ranki(S, 1)) + 1 – select1(B, 1)

= 2 + 1 – 1 = 2

S
i
p
s

m
$
p
i
s

i

REVERSE BWT

B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

B’
1
1
1
1
0
1
1
1
1
0
1
0

S[rank1(B, 1)]= i

LF[1]

= select1(B’, CS[i] + ranki(S, rank1(B, 1))) + 1

– select1(B, rank1(B, 1)))

= select1(B’, 1 + ranki(S, 1)) + 1 – select1(B, 1)

= 2 + 1 – 1 = 2

You can also construct the SA in this way:

12, 11, ….

12,11,8,5,2,1,10,9,7,4,6,3

S
i
p
s

m
$
p
i
s

i

BACKWARD SEARCH

B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

B’
1
1
1
1
0
1
1
1
1
0
1
0

Suppose search for si:

c = i, First = 2, Last = 5

c = s

First = C[c] + Occ(c, First – 1) + 1

Last = C[c] + Occ(c, Last)

S
i
p
s

m
$
p
i
s

i

BACKWARD SEARCH

B
1
1
1
0
1
1
1
1
1
0
1
0

i
1
2
3
4
5
6
7
8
9
10
11
12

B’
1
1
1
1
0
1
1
1
1
0
1
0

c = i, First = 2, Last = 5

c = s

First = select1(B’, CS[s]+1+ranks(S, rank1(B,
2-1))) -1 + 1

=select1(B’,7+1+ranks(S,1))

=select1(B’, 8) = 9

Last = select1(B’, CS[s]+1+ranks(S, rank1(B,5)))
-1

=select1(B’,7+1+ranks(S,4)) – 1

=select1(B’, 9) -1 = 11 – 1 = 10

S
i
p
s

m
$
p
i
s

i

