Amortized Complexity

- \checkmark Aggregate method.
- Accounting method.
- Potential function method.

Potential Function

- $P(i) =$ amortizedCost(i) actualCost(i) + $P(i 1)$
- $\Sigma(P(i) P(i-1)) =$ $\Sigma($ amortized $Cost(i)$ –actual $Cost(i)$)
- $P(n) P(0) = \Sigma(annortizedCost(i) actualCost(i))$
- $P(n) P(0) \ge 0$
- When $P(0) = 0$, $P(i)$ is the amount by which the first i operations have been over charged.

Potential Function Example

 $a = x + ((a + b) * c + d) + y;$

actual cost 111111111511117117

amortized cost 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 potential 1 2 3 4 5 67 8 9 6 7 8 910 5 6 7 2

Potential = stack size except at end.

Accounting Method

- Guess the amortized cost.
- Show that $P(n) P(0) \ge 0$.

Accounting Method Example create an empty stack; for (int $i = 1$; $i \le n$; i^{++}) // n is number of symbols in statement processNextSymbol();

- Guess that amortized complexity of processNextSymbol is 2.
- Start with $P(0) = 0$.
- Can show that $P(i) \geq n$ umber of elements on stack after ith symbol is processed.

Accounting Method Example

 $a = x + ((a + b) * c + d) + y;$

actual cost 111111111511117117

amortized cost 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 potential 1 2 3 4 5 67 8 9 6 7 8 910 5 6 7 2

- Potential \ge number of symbols on stack.
- Therefore, $P(i) \ge 0$ for all i.
- In particular, $P(n) \ge 0$.

- Guess a suitable potential function for which $P(n) - P(0) \ge 0$ for all n.
- Derive amortized cost of ith operation using $\Delta P = P(i) - P(i-1)$

= amortized cost – actual cost

• amortized cost = actual cost + ΔP

Potential Method Example create an empty stack; for (int $i = 1$; $i \le n$; i^{++}) // n is number of symbols in statement processNextSymbol();

- Guess that the potential function is $P(i) =$ number of elements on stack after ith symbol is processed (exception is $P(n) = 2$).
- $P(0) = 0$ and $P(i) P(0) \ge 0$ for all i.

i th Symbol Is Not) or ;

- Actual cost of processNextSymbol is 1.
- Number of elements on stack increases by 1.
- $\Delta P = P(i) P(i-1) = 1$.
- amortized cost = actual cost + ΔP

 $= 1 + 1 = 2$

ith Symbol Is)

- Actual cost of processNextSymbol is $\#unstacked + 1.$
- Number of elements on stack decreases by #unstacked –1.
- $\Delta P = P(i) P(i-1) = 1 \text{\#unstacked.}$
- amortized cost = actual cost + ΔP
	- $=$ #unstacked + 1 +
		- (1 #unstacked)

i th Symbol Is ;

- Actual cost of processNextSymbol is #unstacked = $P(n-1)$.
- Number of elements on stack decreases by $P(n-1)$.
- $\Delta P = P(n) P(n-1) = 2 P(n-1)$.
- amortized cost = actual cost + ΔP

 $= P(n-1) + (2 - P(n-1))$

 $= 2$

- n-bit counter
- Cost of incrementing counter is number of bits that change.
- Cost of 001011 \Rightarrow 001100 is 3.
- Counter starts at 0.
- What is the cost of incrementing the counter m times?

- Worst-case cost of an increment is n.
- Cost of 011111 \Rightarrow 100000 is 6.
- So, the cost of m increments is at most mn.

counter 0 0 0 0 0

- Each increment changes bit 0 (i.e., the right most bit).
- Exactly floor(m/2) increments change bit 1 (i.e., second bit from right).
- Exactly floor(m/4) increments change bit 2.

counter 0 0 0 0 0

- Exactly floor(m/8) increments change bit 3.
- So, the cost of m increments is m $+$ floor(m/2) + floor(m/4) + $<$ 2m
- Amortized cost of an increment is $2m/m = 2$.

- Guess that the amortized cost of an increment is 2.
- Now show that $P(m) P(0) \ge 0$ for all m.
- 1st increment:
	- one unit of amortized cost is used to pay for the change in bit 0 from 0 to 1.
	- the other unit remains as a credit on bit 0 and is used later to pay for the time when bit θ changes from 1 to 0.

bits 00000 credits 00000 0 0 0 0 1 0 0 0 0 1

- one unit of amortized cost is used to pay for the change in bit 1 from 0 to 1
- the other unit remains as a credit on bit 1 and is used later to pay for the time when bit 1 changes from 1 to 0
- the change in bit θ from 1 to θ is paid for by the credit on bit 0

- one unit of amortized cost is used to pay for the change in bit 0 from 0 to 1
- the other unit remains as a credit on bit 0 and is used later to pay for the time when bit 1 changes from 1 to 0

- one unit of amortized cost is used to pay for the change in bit 2 from 0 to 1
- the other unit remains as a credit on bit 2 and is used later to pay for the time when bit 2 changes from 1 to 0
- the change in bits 0 and 1 from 1 to 0 is paid for by the credits on these bits

Accounting Method

• $P(m) - P(0) = \Sigma(annortizedCost(i) - actualCost(i))$

- $=$ amount by which the first m increments have been over charged
	-
- = number of credits
- $=$ number of 1s

 $\geq=0$

- Guess a suitable potential function for which $P(n) - P(0) \ge 0$ for all n.
- Derive amortized cost of ith operation using $\Delta P = P(i) - P(i-1)$

= amortized cost – actual cost

• amortized cost = actual cost + ΔP

- Guess $P(i)$ = number of 1s in counter after ith increment.
- $P(i) \ge 0$ and $P(0) = 0$.
- Let $q = #$ of 1s at right end of counter just before ith increment $(01001111 \Rightarrow q = 4)$.
- Actual cost of ith increment is $1+q$.
- $\Delta P = P(i) P(i-1) = 1 q (0100111 \implies 0101000)$
- amortized cost = actual cost + ΔP

 $= 1+q + (1-q) = 2$

Amortized analyses: dynamic table

- **A nice use of amortized analysis**
- **Operation**
	- § **Table-insertion**
	- § **table-deletion.**
- **Scenario:**
	- § **A table maybe a hash table**
	- § **Do not know how large in advance**
	- § **May expand with insertion**
	- § **May contract with deletion**
	- § **Detailed implementation is not important**

Amortized analyses: dynamic table

- **Goal:**
	- § *O***(1) amortized cost.**
	- § **Unused space always ≤ constant fraction of allocated space.**

Dynamic table

- *Load factor*
	- § *α* **=** *num/size*
	- § **where** *num* **= # items stored,** *size* **= allocated size.**
- **If** *size* **= 0, then** *num* **= 0. Call** *α* **= 1.**
- **Never allow** *α >* **1.**
- Keep α > a constant fraction \rightarrow goal (2).

Dynamic table: expansion with insertion

- **Table expansion**
- **Consider only insertion.**
- **When the table becomes full, double its size and reinsert all existing items.**
- **Guarantees that** *α* **≥ 1***/***2.**
- **Each time we actually insert an item into the table, it's an** *elementary insertion***.**

```
TABLE-INSERT(T, x)1
     if size[T] = 0
 \overline{2}then allocate table[T] with 1 slot
 3
               size[T] \leftarrow 14
     if num[T] = size[T]5
        then allocate new-table with 2 \cdot size[T] slots
 6
               insert all items in table[T] into new-table
 7
               free table[T]8
               table[T] \leftarrow new-table9
               size[T] \leftarrow 2 \cdot size[T]10
     insert x into table [T]
11
     num[T] \leftarrow num[T] + 1
```
Aggregate analysis

- *Running time:*
	- § **Charge 1 per elementary insertion.**
- **Count only elementary insertions,**
	- \blacksquare **all other costs together are constant per call.**
- *ci* **= actual cost of** *i***th operation**
	- § **If not full,** *ci* **= 1.**
	- § **If full, have** *i* **− 1 items in the table at the start of the** *i***th operation. Have to copy all** *i* **− 1 existing items, then insert** *i***th item**

 \cdot ⇒ $ci = i$

Aggregate analysis

- *Cursory analysis:*
	- § *n* **operations** ⇒
	- \blacksquare ci = O(n) ⇒
	- § *O(n***²***)* **time for** *n* **operations.**
- **Of course, we don't always expand:** \bullet *ci* = *i*
	- §**if** *i* **− 1 is exact power of 2** *,* **1 otherwise** *.*

Aggregate analysis

• *So total cost =* ■ $\sum_{i=1}^n$ *ci* § *≤n+*

 $\sum_{i=0}$ **log(***n***)** 2ⁱ § *≤n+2n=3n*

• **Therefore, aggregate analysis says** § **amortized cost per operation = 3.**

Accounting analysis

- **Charge \$3 per insertion of** *x***.**
	- § **\$1 pays for** *x***'s insertion.**
	- § **\$1 pays for** *x* **to be moved in the future.**
	- § **\$1 pays for some other item to be moved.**
- **Suppose we've just expanded**
	- § *size* **=** *m* **before next expansion**
	- § *size* **= 2***m* **after next expansion.**
- **Assume that the expansion used up all the credit, so that there's no credit stored after the expansion**

Accounting analysis

- **Will expand again after another** *m* **insertions.**
- **Each insertion will**
	- § **put \$1 on one of the** *m* **items that were in the table just after expansion**
	- **Put \$1 on the item inserted.**
- • **Have \$2***m* **of credit by next expansion**
- **when there are 2***m* **items to move.**
- **Just enough to pay for the expansion, with no credit left over!**

- ^Φ*(T)* **= 2×***num***[***T* **] −** *size***[***T* **]**
- **Initially,**
	- \blacksquare num = size = 0
	- $\blacksquare \Rightarrow \Phi = 0.$
- **Just after expansion,**
	- § *size* **= 2** ・ *num*
	- $\blacksquare \Rightarrow \Phi = 0.$
- **Just before expansion,**
	- § *size* **=** *num*
	- $\blacktriangleright \Rightarrow \Phi = num$
	- \blacksquare enough to pay for moving all items.

• **Need**

- §^Φ **≥ 0, always.**
- **Always have**
	- §*size* **≥** *num* **≥ ½** *size* ⇒
	- \blacksquare 2 · *num* \geq *size* \Rightarrow
	- Φ \geq 0 .

- *Amortized cost of ith operation:*
	- § *numi* **=** *num* **after** *i* **th operation ,**
	- \blacksquare size_i = size after *i*th operation,
	- $\Phi_i = \Phi$ after \vec{r}^{th} operation.
- **If no expansion:**
	- \blacksquare size_i =

$$
\blacksquare
$$
 size_{i-1},

 \blacksquare num_i =

$$
num_{i-1}+1,
$$

$$
c_i = 1.
$$

•
$$
C_i' = c_i + \Phi_i - \Phi_{i-1}
$$

= 1 + (2num_i - size_i) - (2num_{i-1} - size_{i-1})
= 3.

- **If expansion:**
	- \blacksquare size_i = § **2***sizei***−¹** *,* ■ *size*_{*i*-1} = $num_{i-1} = num_i - 1$, ■ $c_i = num_{i-1} + 1 = num_{i}$
- $C_i' = c_i + \Phi_i \Phi_{i-1}$
	- **=** $num_i + (2num_i size_i) (2num_{i-1})$ **−***size*_{*i*−1}*)*
	- § **⁼***numi* **⁺***(***2***numi* **[−]2***(numi* **[−]1***))* **[−]** *(***2***(numi* **[−]1***)* **[−]** *(numi* **[−]1***))*
	- § **=** *numi* **+ 2 −** *(numi* **−1***)* **= 3**

Expansion and contraction

- **When** *α* **drops too low, contract the table.**
	- § **Allocate a new, smaller one.**
	- § **Copy all items.**
- **Still want**
	- § *α* **bounded from below by a constant,**
	- § **amortized cost per operation =** *O(***1***)***.**
- **Measure cost in terms of elementary insertions and deletions.**

- **Double size when inserting into a full table (when** *α* **= 1, so that after insertion** *α* **would become <1).**
- **Halve size when deletion would make table less than half full (when** *α* **= 1***/***2, so that after deletion** *α* **would become >= 1***/***2).**
- **Then always have 1***/***2 ≤** *α* **≤ 1.**
- **Something BAD happened…**

- **Suppose we fill table.**
	- § **insert** ⇒
		- **double**
	- § **2 deletes** ⇒
		- **halve**
	- § **2 inserts** ⇒
		- **double**
	- § **2 deletes** ⇒
		- **halve**
	- § ・ ・ ・
	- § **Cost of each expansion or contraction is** Θ**(n), so total n operation will be** Θ**(n2).**

- **Problem is that:**
	- § **Not performing enough operations after expansion or contraction to pay for the next one.**
- **Want to make sure that we perform enough operations between consecutive expansions/contractions to pay for the change in table size.**

Simple solution

- **Double as before: when inserting with** $\alpha = 1$
	- $\blacksquare \Rightarrow$ after doubling, $\alpha = 1/2$.
- **Halve size**
	- § **when deleting with** *α* **= 1***/***4**
	- § ⇒ **after halving,** *α* **= 1***/***2.**
- **Thus, immediately after either expansion or contraction**
	- $\alpha = 1/2$.
- **Always have 1***/***4 ≤** *α* **≤ 1.**

Simple solution

- **Suppose we've just expanded/contracted**
- **Need to delete half the items before contraction.**
- **Need to double number of items before expansion.**
- **Either way, number of operations between expansions/contractions is at least a constant fraction of number of items copied.**

Potential function

- ^Φ*(T)* **= 2***num***[***T***] −** *size***[***T***] if** *α* **≥ ½** *size***[T]***/***2 −***num***[***T***] if***α <* **½** *.*
- T empty $\Rightarrow \Phi = 0$.
- *α* **≥ 1***/***2** ⇒
	- § *num* **≥ 1/2***size* ⇒
	- § **2***num* **≥** *size* ⇒
	- $\Phi \geq 0$.
- *α <* **1***/***2** ⇒
	- § *num <* **1/2***size* ⇒
	- $\Phi \geq 0$.

- **measures how far from** *α* **= 1***/***2 we are.**
	- §*α* **= 1***/***2** ⇒
		- ^Φ **= 2***num***−2***num* **= 0.**
	- §*α* **= 1** ⇒
		- ^Φ **= 2***num***−***num*
		- $=$ num .
	- §*α* **= 1***/***4** ⇒
		- ^Φ **=** *size/***2 −** *num* **=**
		- • **= 4***num/***2 −** *num* **=** *num***.**

- **Therefore, when we double or halve, have enough potential to pay for moving all** *num* **items.**
- **Potential increases linearly between** $\alpha = 1/2$ **and** $\alpha = 1$ **, and it also increases linearly between** *α* **= 1***/***2 and** *α* **= 1***/***4.**
- **Since** *α* **has different distances to go to get to 1 or 1***/***4, starting from 1***/***2, rate of increase differs.**

- ^Φ*(T)* **= 2***num***[***T***] −** *size***[***T***] if** *α* **≥ ½**
- **For** *α* **to go from 1***/***2 to 1,**
	- § *num* **increases from** *size/***2 to** *size,* **for a total increase of** *size/***2.**
	- Φ increases from 0 to *size*.
	- Φ needs to increase by 2 for each **item inserted.**
- **That's why there's a coefficient of 2 on the** *num***[***T* **] term in the formula for when** *α* **≥ 1***/***2.**

- ^Φ*(T)* **=** *size***[T]***/***2 −***num***[***T***] if***α <* **½** *.*
- **For** *α* **to go from 1***/***2 to ¼**
	- § *num* **decreases from** *size/***2 to** *size /***4, for a total decrease of** *size/***4.**
	- Φ increases from 0 to *size*/4.
	- Φ needs to increase by 1 for each **item deleted.**
- **That's why there's a coefficient of −1 on the** *num***[***T* **] term in the formula for when** *α <* **1***/***2.**

Amortized cost for each operation

- **Amortized costs: more cases** § **insert, delete**
	- § *α* **≥ 1***/***2,** *α <* **1***/***2 (use** *αⁱ* **, since** *α* **can vary a lot)**
	- § *size* **does/doesn't change**
- **Exercise**