
Amortized Complexity 

ü Aggregate method. 
•  Accounting method. 
•  Potential function method. 



Potential Function 

•  P(i) = amortizedCost(i) – actualCost(i) + P(i – 1) 
•   Σ(P(i) – P(i – 1)) =   
                    Σ(amortizedCost(i) –actualCost(i)) 
•  P(n) – P(0) = Σ(amortizedCost(i) –actualCost(i)) 
•  P(n) – P(0) >= 0 
•  When P(0) = 0, P(i) is the amount by which the

 first i operations have been over charged. 



Potential Function Example 

a = x + ( ( a + b  ) * c + d  ) + y ; 
actual cost 

amortized cost 
potential 

1 1 1 1 1 11 1 1 5 1 1 1 1 7 1 1 7
2 2 2 2 2 22 2 2 2 2

   
2 2 2 2 2 2 2

1 2 3 4 5 67 8 9 6 7 8 910 5 6 7 2

Potential = stack size except at end. 



Accounting Method 

•  Guess the amortized cost. 
•  Show that P(n) – P(0) >= 0. 



Accounting Method Example 

•  Guess that amortized complexity of
 processNextSymbol is 2. 

•  Start with P(0) = 0. 
•  Can show that P(i) >= number of elements

 on stack after ith symbol is processed. 

   create an empty stack; 

    for (int i = 1; i <= n; i++) 

        // n is number of symbols in statement  

        processNextSymbol(); 



Accounting Method Example 

•  Potential >= number of symbols on stack. 
•  Therefore, P(i) >= 0 for all i. 
•  In particular, P(n) >= 0. 

a = x + ( ( a + b  ) * c + d  ) + y ; 
actual cost 

amortized cost 
potential 

1 1 1 1 1 11 1 1 5 1 1 1 1 7 1 1 7
2 2 2 2 2 22 2 2 2 2

   
2 2 2 2 2 2 2

1 2 3 4 5 67 8 9 6 7 8 910 5 6 7 2



Potential Method 

•  Guess a suitable potential function for
 which P(n) – P(0) >= 0 for all n. 

•  Derive amortized cost of ith operation using
 ΔP  = P(i) – P(i–1) 
      = amortized cost – actual cost 

•  amortized cost = actual cost + ΔP 



Potential Method Example 

•  Guess that the potential function is  P(i) =
 number of elements on stack after ith

 symbol is processed (exception is P(n) = 2). 
•  P(0) = 0 and P(i) – P(0) >= 0 for all i. 

   create an empty stack; 

    for (int i = 1; i <= n; i++) 

        // n is number of symbols in statement  

        processNextSymbol(); 



ith Symbol Is Not ) or ; 

•  Actual cost of processNextSymbol is 1. 
•  Number of elements on stack increases by 1. 
•  ΔP = P(i) – P(i–1) = 1. 
•  amortized cost = actual cost + ΔP 

                          = 1 + 1 = 2 



ith Symbol Is ) 
•  Actual cost of processNextSymbol is

 #unstacked + 1. 
•  Number of elements on stack decreases by

 #unstacked –1. 
•  ΔP = P(i) – P(i–1) = 1 – #unstacked. 
•  amortized cost = actual cost + ΔP 

                         = #unstacked + 1 +  
                         (1 – #unstacked) 
                   = 2 



ith Symbol Is ; 
•  Actual cost of processNextSymbol is

 #unstacked = P(n–1). 
•  Number of elements on stack decreases by

 P(n–1). 
•  ΔP = P(n) – P(n–1) = 2 – P(n–1). 
•  amortized cost = actual cost + ΔP 

                         = P(n–1) + (2 – P(n–1)) 
                   = 2 



Binary Counter 

•  n-bit counter 
•  Cost of incrementing counter is number of

 bits that change. 
•  Cost of 001011 => 001100 is 3. 
•  Counter starts at 0. 
•  What is the cost of incrementing the counter

 m times? 



Worst-Case Method 

•  Worst-case cost of an increment is n. 
•  Cost of 011111 => 100000 is 6. 
•  So, the cost of  m increments is at most mn. 



Aggregate Method 

•  Each increment changes bit 0 (i.e., the right
 most bit). 

•  Exactly floor(m/2) increments change bit 1
 (i.e., second bit from right). 

•  Exactly floor(m/4) increments change bit 2. 

counter 
0 0 0 0 0



Aggregate Method 

•  Exactly floor(m/8) increments change bit 3. 
•  So, the cost of  m increments is                     m

 + floor(m/2) + floor(m/4) +  ....   < 2m  
•  Amortized cost of an increment is 2m/m = 2. 

counter 
0 0 0 0 0



Accounting Method 

•  Guess that the amortized cost of an increment is 2. 
•  Now show that P(m) – P(0) >= 0 for all m. 
•  1st increment:   

§  one unit of amortized cost is used to pay for the
 change in bit 0 from 0 to 1. 

§  the other unit remains as a credit on bit 0 and is used
 later to pay for the time when bit 0 changes from 1 to
 0. 

bits 
credits 

0
0

0 0 0 0
0 0 0 0

0
0

0 0 0 1
0 0 0 1



2nd Increment. 

§   one unit of amortized cost is used to pay for the
 change in bit 1 from 0 to 1 

§   the other unit remains as a credit on bit 1 and is used
 later to pay for the time when bit 1 changes from 1 to
 0 

§   the change in bit 0 from 1 to 0 is paid for by the credit
 on bit 0 

 

bits 
credits 

0
0

0 0 0 1
0 0 0 1

0
0

0 0 1 0
0 0 1 0



3rd Increment. 

§   one unit of amortized cost is used to pay for the
 change in bit 0 from 0 to 1 

§   the other unit remains as a credit on bit 0 and is used
 later to pay for the time when bit 1 changes from 1 to
 0 

 

 

bits 
credits 

0
0

0 0 1 0
0 0 1 0

0
0

0 0 1 1
0 0 1 1



4th Increment. 

§   one unit of amortized cost is used to pay for the
 change in bit 2 from 0 to 1 

§   the other unit remains as a credit on bit 2 and is used
 later to pay for the time when bit 2 changes from 1 to
 0 

§   the change in bits 0 and 1 from 1 to 0 is paid for by
 the credits on these bits 

 

bits 
credits 

0
0

0 0 1 1
0 0 1 1

0
0

0 1 0 0
0 1 0 0



Accounting Method 

 
•  P(m) – P(0) = Σ(amortizedCost(i) –actualCost(i)) 

                     = amount by which the first m 
                      increments have been over charged   

                     = number of credits 
                   = number of 1s  
                     >= 0        



Potential Method 

•  Guess a suitable potential function for
 which P(n) – P(0) >= 0 for all n. 

•  Derive amortized cost of ith operation using
 ΔP  = P(i) – P(i–1) 
      = amortized cost – actual cost 

•  amortized cost = actual cost + ΔP 



Potential Method 
•  Guess P(i) = number of 1s in counter after ith

 increment. 
•  P(i)  >= 0 and P(0) = 0. 
•  Let q = # of 1s at right end of counter just before ith

 increment (01001111 => q = 4). 
•  Actual cost of ith increment is 1+q. 
•   ΔP  = P(i) – P(i – 1) = 1 – q (0100111 => 0101000) 
•  amortized cost = actual cost + ΔP 

                           = 1+q + (1 – q) = 2  



Amortized analyses: dynamic table 

•  A nice use of amortized analysis 
•  Operation 

§  Table-insertion 
§  table-deletion. 

•  Scenario: 
§ A table – maybe a hash table 
§ Do not know how large in advance 
§ May expand with insertion 
§ May contract with deletion 
§ Detailed implementation is not 

important 



Amortized analyses: dynamic table 

•  Goal:  
§ O(1) amortized cost. 

§ Unused space always ≤ 
constant fraction of allocated 
space. 



Dynamic table 

•  Load factor 
§ α = num/size 
§ where num = # items stored, size = 

allocated size. 
•  If size = 0, then num = 0. Call α = 1. 
•  Never allow α > 1. 
•  Keep α> a constant fraction à goal (2). 



Dynamic table: expansion with insertion 

•  Table expansion 
•  Consider only insertion. 
•  When the table becomes full, double 

its size and reinsert all existing 
items. 

•  Guarantees that α ≥ 1/2. 
•  Each time we actually insert an item 

into the table, it’s an elementary 
insertion. 
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Aggregate analysis 
•  Running time:  

§ Charge 1 per elementary insertion.  
•  Count only elementary insertions, 

§  all other costs together are constant per 
call. 

•  ci = actual cost of ith operation 
§  If not full, ci = 1. 
§  If full, have i − 1 items in the table at the 

start of the ith operation. Have to copy all 
i − 1 existing items, then insert ith item 
• ⇒ ci = i  



Aggregate analysis 

•  Cursory analysis:  
§ n operations ⇒  
§ ci = O(n) ⇒ 
§ O(n2) time for n operations. 

•  Of course, we don’t always expand: 
§ ci =    i   
§           if i − 1 is exact power of 2 , 
             1   otherwise . 



Aggregate analysis 

• So total cost = 
§ ∑i=1

n ci  
§ ≤n+  
                ∑i=0

log(n) 2i  

§ ≤n+2n=3n 

• Therefore, aggregate analysis 
says  
§ amortized cost per operation = 3. 



Accounting analysis 
•  Charge $3 per insertion of x. 

§   $1 pays for x’s insertion. 
§   $1 pays for x to be moved in the future. 
§   $1 pays for some other item to be 

moved. 
•  Suppose we’ve just expanded 

§  size = m before next expansion 
§  size = 2m after next expansion. 

•  Assume that the expansion used up 
all the credit, so that there’s no credit 
stored after the expansion 



Accounting analysis 
 
•  Will expand again after another m 

insertions. 
•  Each insertion will  

§ put $1 on one of the m items that were in 
the table just after expansion  

§ put $1 on the item inserted. 
•   Have $2m of credit by next expansion 
•  when there are 2m items to move.  
•  Just enough to pay for the expansion, 

with no credit left over! 



Potential method 
•  Φ(T ) = 2×num[T ] − size[T ] 
•  Initially,  

§ num = size = 0 
§ ⇒ Φ = 0. 

•  Just after expansion,  
§ size = 2 ・ num  
§ ⇒ Φ = 0. 

•  Just before expansion,  
§ size = num  
§ ⇒ Φ = num 
§ enough to pay for moving all items. 



Potential method 
• Need  
§ Φ ≥ 0, always. 

• Always have 
§ size ≥ num ≥ ½ size ⇒  
§ 2・num ≥ size ⇒  
§ Φ ≥ 0 . 



Potential method 
•  Amortized cost of ith operation: 

§  numi = num after ith operation , 
§  sizei = size after ith operation , 
§ Φi = Φ after ith operation . 

•  If no expansion: 
§  sizei =  
§          sizei−1 , 
§  numi =  
§          numi−1 +1 , 
§  ci = 1 . 

•  Ci’ = ci + Φi − Φi−1  
§  = 1 + (2numi −sizei ) − (2numi−1 −sizei−1) 
§  =3. 



Potential method 
•  If expansion: 

§ sizei =  
§              2sizei−1 , 
§ sizei−1 =  
§              numi−1 = numi −1 , 
§ ci = numi−1 +1 = numi. 

•  Ci’ = ci + Φi − Φi−1  
§ = numi + (2numi −sizei ) − (2numi−1 
−sizei−1)  

§ = numi + (2numi −2(numi −1)) − 
(2(numi −1) − (numi −1))  

§ = numi + 2 − (numi −1) = 3 



Expansion and contraction 
•  When α drops too low, contract the 

table. 
§ Allocate a new, smaller one. 
§ Copy all items. 

•  Still want 
§ α bounded from below by a constant, 
§ amortized cost per operation = O(1). 

•  Measure cost in terms of elementary 
insertions and deletions. 



Obvious strategy 
•  Double size when inserting into a full 

table (when α = 1, so that after 
insertion α would become <1). 

•  Halve size when deletion would make 
table less than half full (when α = 1/2, 
so that after deletion α would become 
>= 1/2).  

•  Then always have 1/2 ≤ α ≤ 1. 

•  Something BAD happened… 



Obvious strategy 
•  Suppose we fill table. 

§  insert ⇒ 
•  double 

§  2 deletes ⇒  
•  halve 

§  2 inserts ⇒  
•  double 

§  2 deletes ⇒  
•  halve   

§ ・ ・ ・ 
§ Cost of each expansion or contraction is 
Θ(n), so total n operation will be Θ(n2). 



Obvious strategy 

•  Problem is that: 
§   Not performing enough operations after 

expansion or contraction to pay for the 
next one. 

•  Want to make sure that we perform 
enough operations between 
consecutive expansions/contractions 
to pay for the change in table size. 



Simple solution 

•  Double as before: when inserting with 
α = 1  
§ ⇒ after doubling, α = 1/2. 

•  Halve size  
§ when deleting with α = 1/4  
§ ⇒ after halving, α = 1/2. 

•  Thus, immediately after either 
expansion or contraction 
§ α = 1/2. 

•  Always have 1/4 ≤ α ≤ 1. 



Simple solution 

•  Suppose we’ve just expanded/contracted 
•  Need to delete half the items before 

contraction. 
•  Need to double number of items before 

expansion. 
•  Either way, number of operations 

between expansions/contractions is at 
least a constant fraction of number of 
items copied.  



Potential function 

•  Φ(T) =   2num[T] − size[T]  if α ≥ ½ 
                 size[T]/2 −num[T]  ifα < ½ . 
•  T empty ⇒ Φ = 0. 
•  α ≥ 1/2 ⇒  

§ num ≥ 1/2size ⇒  
§ 2num ≥ size ⇒  
§ Φ ≥ 0. 

•  α < 1/2 ⇒  
§ num < 1/2size ⇒  
§ Φ ≥ 0. 



intuition 

• measures how far from α = 1/2 
we are. 
§ α = 1/2 ⇒  
• Φ = 2num−2num = 0. 

§ α = 1 ⇒  
• Φ = 2num−num  
•     = num. 

§ α = 1/4 ⇒  
• Φ = size/2 − num =  
•     = 4num/2 − num = num. 



intuition 

•  Therefore, when we double or 
halve, have enough potential to 
pay for moving all num items. 
•  Potential increases linearly 

between α = 1/2 and α = 1, and it 
also increases linearly between α = 
1/2 and α = 1/4.  

•  Since α has different distances to go 
to get to 1 or 1/4, starting from 1/2, 
rate of increase differs. 



intuition 

•  Φ(T) =   2num[T] − size[T]  if α ≥ ½ 

•  For α to go from 1/2 to 1,  
§ num increases from size/2 to size, for 

a total increase of size/2.  
§ Φ  increases from 0 to size.  
§ Φ  needs to increase by 2 for each 

item inserted.  
•  That’s why there’s a coefficient of 2 on 

the num[T ] term in the formula for  
when α ≥ 1/2. 



intuition 

•  Φ(T) = size[T]/2 −num[T]  ifα < ½ . 

•  For α to go from 1/2 to ¼ 
§ num decreases from size/2 to size /4, 

for a total decrease of size/4.  
§ Φ increases from 0 to size/4.  
§ Φ  needs to increase by 1 for each 

item deleted.  
•  That’s why there’s a coefficient of −1 

on the num[T ] term in the formula for  
when α < 1/2. 



•  Amortized costs: more cases 
§ insert, delete 
§ α ≥ 1/2, α < 1/2 (use αi, since α 

can vary a lot) 
§ size does/doesn’t change 

•  Exercise 

Amortized cost for each operation 


