
Amortized Complexity

ü Aggregate method.
•  Accounting method.
•  Potential function method.

Potential Function

•  P(i) = amortizedCost(i) – actualCost(i) + P(i – 1)
•  Σ(P(i) – P(i – 1)) =
 Σ(amortizedCost(i) –actualCost(i))
•  P(n) – P(0) = Σ(amortizedCost(i) –actualCost(i))
•  P(n) – P(0) >= 0
•  When P(0) = 0, P(i) is the amount by which the

 first i operations have been over charged.

Potential Function Example

a = x + ((a + b) * c + d) + y ;
actual cost

amortized cost
potential

1 1 1 1 1 11 1 1 5 1 1 1 1 7 1 1 7
2 2 2 2 2 22 2 2 2 2

2 2 2 2 2 2 2

1 2 3 4 5 67 8 9 6 7 8 910 5 6 7 2

Potential = stack size except at end.

Accounting Method

•  Guess the amortized cost.
•  Show that P(n) – P(0) >= 0.

Accounting Method Example

•  Guess that amortized complexity of
 processNextSymbol is 2.

•  Start with P(0) = 0.
•  Can show that P(i) >= number of elements

 on stack after ith symbol is processed.

 create an empty stack;

 for (int i = 1; i <= n; i++)

 // n is number of symbols in statement

 processNextSymbol();

Accounting Method Example

•  Potential >= number of symbols on stack.
•  Therefore, P(i) >= 0 for all i.
•  In particular, P(n) >= 0.

a = x + ((a + b) * c + d) + y ;
actual cost

amortized cost
potential

1 1 1 1 1 11 1 1 5 1 1 1 1 7 1 1 7
2 2 2 2 2 22 2 2 2 2

2 2 2 2 2 2 2

1 2 3 4 5 67 8 9 6 7 8 910 5 6 7 2

Potential Method

•  Guess a suitable potential function for
 which P(n) – P(0) >= 0 for all n.

•  Derive amortized cost of ith operation using
 ΔP = P(i) – P(i–1)
 = amortized cost – actual cost

•  amortized cost = actual cost + ΔP

Potential Method Example

•  Guess that the potential function is P(i) =
 number of elements on stack after ith

 symbol is processed (exception is P(n) = 2).
•  P(0) = 0 and P(i) – P(0) >= 0 for all i.

 create an empty stack;

 for (int i = 1; i <= n; i++)

 // n is number of symbols in statement

 processNextSymbol();

ith Symbol Is Not) or ;

•  Actual cost of processNextSymbol is 1.
•  Number of elements on stack increases by 1.
•  ΔP = P(i) – P(i–1) = 1.
•  amortized cost = actual cost + ΔP

 = 1 + 1 = 2

ith Symbol Is)
•  Actual cost of processNextSymbol is

 #unstacked + 1.
•  Number of elements on stack decreases by

 #unstacked –1.
•  ΔP = P(i) – P(i–1) = 1 – #unstacked.
•  amortized cost = actual cost + ΔP

 = #unstacked + 1 +
 (1 – #unstacked)
 = 2

ith Symbol Is ;
•  Actual cost of processNextSymbol is

 #unstacked = P(n–1).
•  Number of elements on stack decreases by

 P(n–1).
•  ΔP = P(n) – P(n–1) = 2 – P(n–1).
•  amortized cost = actual cost + ΔP

 = P(n–1) + (2 – P(n–1))
 = 2

Binary Counter

•  n-bit counter
•  Cost of incrementing counter is number of

 bits that change.
•  Cost of 001011 => 001100 is 3.
•  Counter starts at 0.
•  What is the cost of incrementing the counter

 m times?

Worst-Case Method

•  Worst-case cost of an increment is n.
•  Cost of 011111 => 100000 is 6.
•  So, the cost of m increments is at most mn.

Aggregate Method

•  Each increment changes bit 0 (i.e., the right
 most bit).

•  Exactly floor(m/2) increments change bit 1
 (i.e., second bit from right).

•  Exactly floor(m/4) increments change bit 2.

counter
0 0 0 0 0

Aggregate Method

•  Exactly floor(m/8) increments change bit 3.
•  So, the cost of m increments is m

 + floor(m/2) + floor(m/4) + < 2m
•  Amortized cost of an increment is 2m/m = 2.

counter
0 0 0 0 0

Accounting Method

•  Guess that the amortized cost of an increment is 2.
•  Now show that P(m) – P(0) >= 0 for all m.
•  1st increment:

§  one unit of amortized cost is used to pay for the
 change in bit 0 from 0 to 1.

§  the other unit remains as a credit on bit 0 and is used
 later to pay for the time when bit 0 changes from 1 to
 0.

bits
credits

0
0

0 0 0 0
0 0 0 0

0
0

0 0 0 1
0 0 0 1

2nd Increment.

§  one unit of amortized cost is used to pay for the
 change in bit 1 from 0 to 1

§  the other unit remains as a credit on bit 1 and is used
 later to pay for the time when bit 1 changes from 1 to
 0

§  the change in bit 0 from 1 to 0 is paid for by the credit
 on bit 0

bits
credits

0
0

0 0 0 1
0 0 0 1

0
0

0 0 1 0
0 0 1 0

3rd Increment.

§  one unit of amortized cost is used to pay for the
 change in bit 0 from 0 to 1

§  the other unit remains as a credit on bit 0 and is used
 later to pay for the time when bit 1 changes from 1 to
 0

bits
credits

0
0

0 0 1 0
0 0 1 0

0
0

0 0 1 1
0 0 1 1

4th Increment.

§  one unit of amortized cost is used to pay for the
 change in bit 2 from 0 to 1

§  the other unit remains as a credit on bit 2 and is used
 later to pay for the time when bit 2 changes from 1 to
 0

§  the change in bits 0 and 1 from 1 to 0 is paid for by
 the credits on these bits

bits
credits

0
0

0 0 1 1
0 0 1 1

0
0

0 1 0 0
0 1 0 0

Accounting Method

•  P(m) – P(0) = Σ(amortizedCost(i) –actualCost(i))

 = amount by which the first m
 increments have been over charged

 = number of credits
 = number of 1s
 >= 0

Potential Method

•  Guess a suitable potential function for
 which P(n) – P(0) >= 0 for all n.

•  Derive amortized cost of ith operation using
 ΔP = P(i) – P(i–1)
 = amortized cost – actual cost

•  amortized cost = actual cost + ΔP

Potential Method
•  Guess P(i) = number of 1s in counter after ith

 increment.
•  P(i) >= 0 and P(0) = 0.
•  Let q = # of 1s at right end of counter just before ith

 increment (01001111 => q = 4).
•  Actual cost of ith increment is 1+q.
•  ΔP = P(i) – P(i – 1) = 1 – q (0100111 => 0101000)
•  amortized cost = actual cost + ΔP

 = 1+q + (1 – q) = 2

Amortized analyses: dynamic table

•  A nice use of amortized analysis
•  Operation

§  Table-insertion
§  table-deletion.

•  Scenario:
§ A table – maybe a hash table
§ Do not know how large in advance
§ May expand with insertion
§ May contract with deletion
§ Detailed implementation is not

important

Amortized analyses: dynamic table

•  Goal:
§ O(1) amortized cost.

§ Unused space always ≤
constant fraction of allocated
space.

Dynamic table

•  Load factor
§ α = num/size
§ where num = # items stored, size =

allocated size.
•  If size = 0, then num = 0. Call α = 1.
•  Never allow α > 1.
•  Keep α> a constant fraction à goal (2).

Dynamic table: expansion with insertion

•  Table expansion
•  Consider only insertion.
•  When the table becomes full, double

its size and reinsert all existing
items.

•  Guarantees that α ≥ 1/2.
•  Each time we actually insert an item

into the table, it’s an elementary
insertion.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Aggregate analysis
•  Running time:

§ Charge 1 per elementary insertion.
•  Count only elementary insertions,

§  all other costs together are constant per
call.

•  ci = actual cost of ith operation
§  If not full, ci = 1.
§  If full, have i − 1 items in the table at the

start of the ith operation. Have to copy all
i − 1 existing items, then insert ith item
• ⇒ ci = i

Aggregate analysis

•  Cursory analysis:
§ n operations ⇒
§ ci = O(n) ⇒
§ O(n2) time for n operations.

•  Of course, we don’t always expand:
§ ci = i
§  if i − 1 is exact power of 2 ,
 1 otherwise .

Aggregate analysis

• So total cost =
§ ∑i=1

n ci
§ ≤n+
 ∑i=0

log(n) 2i

§ ≤n+2n=3n

• Therefore, aggregate analysis
says
§ amortized cost per operation = 3.

Accounting analysis
•  Charge $3 per insertion of x.

§  $1 pays for x’s insertion.
§  $1 pays for x to be moved in the future.
§  $1 pays for some other item to be

moved.
•  Suppose we’ve just expanded

§  size = m before next expansion
§  size = 2m after next expansion.

•  Assume that the expansion used up
all the credit, so that there’s no credit
stored after the expansion

Accounting analysis

•  Will expand again after another m

insertions.
•  Each insertion will

§ put $1 on one of the m items that were in
the table just after expansion

§ put $1 on the item inserted.
•  Have $2m of credit by next expansion
•  when there are 2m items to move.
•  Just enough to pay for the expansion,

with no credit left over!

Potential method
•  Φ(T) = 2×num[T] − size[T]
•  Initially,

§ num = size = 0
§ ⇒ Φ = 0.

•  Just after expansion,
§ size = 2 ・ num
§ ⇒ Φ = 0.

•  Just before expansion,
§ size = num
§ ⇒ Φ = num
§ enough to pay for moving all items.

Potential method
• Need
§ Φ ≥ 0, always.

• Always have
§ size ≥ num ≥ ½ size ⇒
§ 2・num ≥ size ⇒
§ Φ ≥ 0 .

Potential method
•  Amortized cost of ith operation:

§  numi = num after ith operation ,
§  sizei = size after ith operation ,
§ Φi = Φ after ith operation .

•  If no expansion:
§  sizei =
§  sizei−1 ,
§  numi =
§  numi−1 +1 ,
§  ci = 1 .

•  Ci’ = ci + Φi − Φi−1
§  = 1 + (2numi −sizei) − (2numi−1 −sizei−1)
§  =3.

Potential method
•  If expansion:

§ sizei =
§  2sizei−1 ,
§ sizei−1 =
§  numi−1 = numi −1 ,
§ ci = numi−1 +1 = numi.

•  Ci’ = ci + Φi − Φi−1
§ = numi + (2numi −sizei) − (2numi−1
−sizei−1)

§ = numi + (2numi −2(numi −1)) −
(2(numi −1) − (numi −1))

§ = numi + 2 − (numi −1) = 3

Expansion and contraction
•  When α drops too low, contract the

table.
§ Allocate a new, smaller one.
§ Copy all items.

•  Still want
§ α bounded from below by a constant,
§ amortized cost per operation = O(1).

•  Measure cost in terms of elementary
insertions and deletions.

Obvious strategy
•  Double size when inserting into a full

table (when α = 1, so that after
insertion α would become <1).

•  Halve size when deletion would make
table less than half full (when α = 1/2,
so that after deletion α would become
>= 1/2).

•  Then always have 1/2 ≤ α ≤ 1.

•  Something BAD happened…

Obvious strategy
•  Suppose we fill table.

§  insert ⇒
•  double

§  2 deletes ⇒
•  halve

§  2 inserts ⇒
•  double

§  2 deletes ⇒
•  halve

§ ・ ・ ・
§ Cost of each expansion or contraction is
Θ(n), so total n operation will be Θ(n2).

Obvious strategy

•  Problem is that:
§  Not performing enough operations after

expansion or contraction to pay for the
next one.

•  Want to make sure that we perform
enough operations between
consecutive expansions/contractions
to pay for the change in table size.

Simple solution

•  Double as before: when inserting with
α = 1
§ ⇒ after doubling, α = 1/2.

•  Halve size
§ when deleting with α = 1/4
§ ⇒ after halving, α = 1/2.

•  Thus, immediately after either
expansion or contraction
§ α = 1/2.

•  Always have 1/4 ≤ α ≤ 1.

Simple solution

•  Suppose we’ve just expanded/contracted
•  Need to delete half the items before

contraction.
•  Need to double number of items before

expansion.
•  Either way, number of operations

between expansions/contractions is at
least a constant fraction of number of
items copied.

Potential function

•  Φ(T) = 2num[T] − size[T] if α ≥ ½
 size[T]/2 −num[T] ifα < ½ .
•  T empty ⇒ Φ = 0.
•  α ≥ 1/2 ⇒

§ num ≥ 1/2size ⇒
§ 2num ≥ size ⇒
§ Φ ≥ 0.

•  α < 1/2 ⇒
§ num < 1/2size ⇒
§ Φ ≥ 0.

intuition

• measures how far from α = 1/2
we are.
§ α = 1/2 ⇒
• Φ = 2num−2num = 0.

§ α = 1 ⇒
• Φ = 2num−num
•  = num.

§ α = 1/4 ⇒
• Φ = size/2 − num =
•  = 4num/2 − num = num.

intuition

•  Therefore, when we double or
halve, have enough potential to
pay for moving all num items.
•  Potential increases linearly

between α = 1/2 and α = 1, and it
also increases linearly between α =
1/2 and α = 1/4.

•  Since α has different distances to go
to get to 1 or 1/4, starting from 1/2,
rate of increase differs.

intuition

•  Φ(T) = 2num[T] − size[T] if α ≥ ½

•  For α to go from 1/2 to 1,
§ num increases from size/2 to size, for

a total increase of size/2.
§ Φ increases from 0 to size.
§ Φ needs to increase by 2 for each

item inserted.
•  That’s why there’s a coefficient of 2 on

the num[T] term in the formula for
when α ≥ 1/2.

intuition

•  Φ(T) = size[T]/2 −num[T] ifα < ½ .

•  For α to go from 1/2 to ¼
§ num decreases from size/2 to size /4,

for a total decrease of size/4.
§ Φ increases from 0 to size/4.
§ Φ needs to increase by 1 for each

item deleted.
•  That’s why there’s a coefficient of −1

on the num[T] term in the formula for
when α < 1/2.

•  Amortized costs: more cases
§ insert, delete
§ α ≥ 1/2, α < 1/2 (use αi, since α

can vary a lot)
§ size does/doesn’t change

•  Exercise

Amortized cost for each operation

