Analysis Of Binomial Heaps

Operations

- Insert
	- Add a new min tree to top-level circular list.
- Meld
	- § Combine two circular lists.
- Remove min
	- Pairwise combine min trees whose roots have equal degree.
	- O(MaxDegree $+$ s), where s is number of min trees following removal of min element but before pairwise combining.

Binomial Trees

- B_k , $k > 0$, is two B_{k-1} s.
- One of these is a subtree of the other.

All Trees In Binomial Heap Are Binomial Trees

- Initially, all trees in system are Binomial trees (actually, there are no trees initially).
- Assume true before an operation, show true after the operation.
- Insert creates a B_0 .
- Meld does not create new trees.
- Remove Min
	- § Reinserted subtrees are binomial trees.
	- Pairwise combine takes two trees of equal degree and makes one a subtree of the other.

Complexity of Remove Min

- Let **n** be the number of operations performed.
	- Number of inserts is at most n.
	- No binomial tree has more than **n** elements.
	- MaxDegree \leq log₂n.
	- Complexity of remove min is $O(log n + s) = O(n)$.

Aggregate Method

- Get a good bound on the cost of every sequence of operations and divide by the number of operations.
- Results in same amortized cost for each operation, regardless of operation type.
- Can't use this method, because we want to show a different amortized cost for remove mins than for inserts and melds.

Aggregate Method – Alternative

- Get a good bound on the cost of every sequence of remove mins and divide by the number of remove mins.
- Consider the sequence insert, insert, ..., insert, remove min.
	- The cost of the remove min is $O(n)$, where n is the number of operations in the sequence.
	- So, amortized cost of a remove min is $O(n/1) = O(n)$.

Accounting Method

- Guess the amortized cost.
	- **•** Insert \Rightarrow 2.
	- \blacksquare Meld \Rightarrow 1.
	- Remove min \Rightarrow 3log₂n.
- Show that $P(i) P(0) \ge 0$ for all i.

Potential Function

- $P(i)$ = amortizedCost(i) actualCost(i) + $P(i 1)$
- $P(i) P(0)$ is the amount by which the first *i* operations have been over charged.
- We shall use a credit scheme to keep track of (some of) the over charge.
- There will be 1 credit on each min tree.
- Initially, $\# {\text{trees}} = 0$ and so total credits and $P(0) = 0$.
- Since number of trees cannot be ≤ 0 , the total credits is always ≥ 0 and hence $P(i) \geq 0$ for all i.

Insert

- Guessed amortized $cost = 2$.
- Use 1 unit to pay for the actual cost of the insert.
- Keep the remaining 1 unit as a credit.
- Keep this credit with the min tree that is created by the insert operation.
- Potential increases by 1, because there is an overcharge of 1.

Meld

- Guessed amortized cost $= 1$.
- Use 1 unit to pay for the actual cost of the meld.
- Potential is unchanged, because actual and amortized costs are the same.

Remove Min Al.

- Let MinTrees be the set of min trees in the binomial heap just before remove min.
- Let u be the degree of min tree whose root is removed.
- Let s be the number of min trees in binomial heap just before pairwise combining.
	- \blacksquare s = #MinTrees + u 1
- Actual cost of remove min is \leq MaxDegree + s ϵ = 2log₂n –1+ #MinTrees.

Remove Min A

- Guessed amortized cost = $3\log_2 n$.
- Actual cost \leq 2log₂n 1 + #MinTrees.
- Allocation of amortized cost.
	- Use up to $2\log_2 n 1$ to pay part of actual cost.
	- § Keep some or all of the remaining amortized cost as a credit.
	- Put 1 unit of credit on each of the at most $log_2 n + 1$ min trees left behind by the remove min operation.
	- Discard the remainder (if any).

Paying Actual Cost Of A Remove Min

• Actual cost \leq 2log₂n – 1 + #MinTrees

- How is it paid for?
	- $2\log_2 n 1$ comes from amortized cost of this remove min operation.
	- #MinTrees comes from the min trees themselves, at the rate of 1 unit per min tree, using up their credits.
	- Potential may increase or decrease but remains nonnegative as each remaining tree has a credit.

Potential Method

- Guess a suitable potential function for which $P(i) - P(0) \ge 0$ for all i.
- Derive amortized cost of ith operation using $\Delta P = P(i) - P(i-1)$

= amortized cost – actual cost

• amortized cost = actual cost + ΔP

Potential Function

- $P(i) = \Sigma \# \text{MinTrees}(i)$
	- #MinTrees(j) is #MinTrees for binomial heap j.
	- When binomial heaps A and **B** are melded, A and B are no longer included in the sum.
- $P(0) = 0$
- $P(i) \ge 0$ for all i.
- ith operation is an insert.
	- Actual cost of insert $= 1$
	- $\Delta P = P(i) P(i 1) = 1$
	- Amortized cost of insert = actual cost + ΔP

ith Operation Is A Meld

- Actual cost of meld $= 1$
- $P(i) = \sum \# Min Trees(i)$
- $\Delta P = P(i) P(i 1) = 0$
- Amortized cost of meld = actual cost $+ \Delta P$

 $= 1$

ith Operation Is A Remove Min

- old \Rightarrow value just before the remove min
- new \Rightarrow value just after the remove min.
- #MinTrees^{old}(j) => value of #MinTrees in jth binomial heap just before this remove min.
- Assume remove min is done in kth binomial heap.

ith Operation Is A Remove Min

• Actual cost of remove min from binomial heap k \leq 2log₂n – 1 + #MinTrees^{old}(k)

•
$$
\Delta P = P(i) - P(i-1)
$$

- $= \sum_{i=1}^{n}$ = $\sum_{i=1}^{n}$ = $\sum_{i=1}^{n$
- $=$ #MinTrees^{new}(k) #MinTrees^{old}(k).
- Amortized cost of remove min = actual cost + ΔP ϵ = 2log₂n – 1 + #MinTrees^{new} (k) \leq 3log₂n.