
Web Data Management
		

	Data Compression and Search

 Similarity Search

Overview

The foundations of

• how different compression tools work.
• how to manage a large amount of data on

small devices.
• how to search gigabytes, terabytes or

petabytes of data.
• how to perform full text search efficiently

without added indexing.
• how to query data with similarity measurements

efficiently.

Course Aims
As the amount of Web data increases, it is
becoming vital to not only be able to search and
retrieve this information quickly, but also to store
it in a compact manner.

This is especially important for mobile devices
which are becoming increasingly popular.

Without loss of generality, within this course, we
assume Web data (excluding media content) will
be in XML and its like (e.g., XHTML).

Course Aims
1.  Introduce the concepts, theories, and algorithmic issues

important to Web data compression and search.

2.  Discuss similarity search techniques for flat strings and
hierarchical data (for example, XML).

3.  Selected methods will be presented, their effectiveness
and efficiency will be discussed.

4.  Filtering techniques to improve the efficiency will be
introduced.

Course info

• Lectures: 14:00-16:25 (Mon)
	– Y 201
	– Weeks 1-12

Lecturer in charge

吕建华

Office: Room 230, Computer Building
Email: lujianhua@seu.edu.cn

Assumed knowledge

At the start of this course students should be able to:
			

• understand fundamental data structures.
• knowledge and tools of RDBMS and SQL
• produce correct programs in C/C++, i.e., compilation,
	running, testing, debugging, etc.

• appreciate use of abstraction in computing.
• produce readable code with clear documentation.

Final Mark

• Assignments (50%)
• Representations (30%)

 in class
 with/without preparations

• Final report (20%)
 About Assignments/Representations

Assignments

• Programming assignments (except
assigt1) are relatively challenging

• In addition to correctness, reasonable
performance is required

Tentative course schedule
Week Lecture
1 Course overview; basic information theory
2 Arithmetic coding, adaptive coding, dictionary coding
3 Adaptive Huffman, LZW; Overview of BWT
4 Pattern matching and regular expression
5 FM index, backward search, suffix array
6 Suffix array O(n), compressed BWT
7 XML overview
8 XML compression
9 Similarity search overview
10 String edit distance
11  q-gram distance
12  Trees, RDB, and tree edit distance

Now

• Others you should know…

• Data compression and search starts …

Learning outcomes
• have a good understanding of the fundamentals of text

compression
• be introduced to advanced data compression techniques

such as those based on Burrows Wheeler Transform
• have programming experience in Web data compression

and optimization
• have a deep understanding of XML and selected XML

processing and optimization techniques
• understand the advantages and disadvantages of data

compression for Web search
• have a basic understanding of XML distributed query

processing
• appreciate the past, present and future of data

compression and Web data optimization

Questions to discuss

• What is data compression
• Why data compression
• Where

Compression

• Minimize amount of information to be
stored / transmitted

• Transform a sequence of characters into a
new bit sequence
– same information content (for lossless)
– as short as possible

Familiar tools

• Tools for
	– .Z
	– .zip
	– .gz
	– .bz2
	–…

A glimpse

raaabbccccdabbbbeee$

Run-length coding

• Run-length coding (encoding) is a very
widely used and simple compression
Technique

– replace runs of symbols (possibly of length

one) with pairs of (symbol, run-length)

RLE

raaabbccccdaaaaabbbbeeeeeed$

How？

ra3bbc4da5b4e6d$

Example: BWT

rabcabcababaabacabcabcabcababaa$

Example: BWT

rabcabcababaabacabcabcabcababaa$

aabbbbccacccrcbaaaaaaaaaabbbbba$

Example: BWT+RLE

rabcabcababaabacabcabcabcababaa$

aabbbbccacccrcbaaaaaaaaaabbbbba$

aab4ccac3rcba10b5a$

HTTP compression
HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Etag: "3f80f-1b6-3e1cb03b"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip

From: http://www.telerik.com/products/aspnet-ajax/compression.aspx

Storwize
Better Storage Utilization
Reduces existing storage utilization up to 80%
No performance degradation
Lowers Capital and Operational Costs
Better Energy Efficiency
Less to store, power and cool
	
…

Source: from storwize.com

31

Anti-virus definitions & updates

Others

• Software updates
e.g., Reg files, UI schemas / definitions

• Software configuration/database updates
e.g., Virus database for anti-virus software

• Data streams
e.g., RSS

34

Similarity measure

If two objects compress better together than
separately, it means they share common
patterns and are similar.

From: Li, M. et al., “The similarity metric”, IEEE Transactions on Information Theory,
50(12), 2004

	 	Overview
			
• Compression refers to a process of coding that will

	effectively reduce the total number of bits needed to
	represent certain information.

• Information theory studies efficient coding algorithms
	– complexity, compression, likelihood of error

Compression
• There are two main categories

– Lossless (Input message = Output message)
– Lossy (Input message ≈ Output message)

• Not necessarily reduce quality

Compression

Compression Ratio =

Space Savings = 1-

Uncompressed Size
	Compressed Size

	Compressed Size
		
Uncompressed Size

Example

• Compress a 10MB file to 2MB

• Compression ratio = 5 or 5:1

• Space savings = 0.8 or 80%

Terminology
• Coding (encoding) maps source messages from

alphabet (S) into codewords (C)

• Source message (symbol) is basic unit into
which a string is partitioned
– can be a single letter or a string of letters

Terminology (Types)
• Block-block

– source message and codeword: fixed length
– e.g., ASCII

• Block-variable
– source message: fixed; codeword: variable
– e.g., Huffman coding

• Variable-block
– source message: variable; codeword: fixed
– e.g., LZW

• Variable-variable
– source message and codeword: variable
– e.g., Arithmetic coding

Terminology (Symmetry)
• Symmetric compression

– requires same time for encoding and decoding
– used for live mode applications (teleconference)

• Asymmetric compression
– performed once when enough time is available
– decompression performed frequently, must be fast
– used for retrieval mode applications (e.g., an

interactive CD-ROM)

44

	 	 	Decodable
			

A code is
	– distinct if each codeword can be distinguished
	 	from every other (mapping is one-to-one)
	– uniquely decodable if every codeword is
	 	identifiable when immersed in a sequence of
	 	codewords

45

•
•
•
•
•
•

	Example
			

A: 1
B: 10
C: 11
D: 101
To encode ABCD: 11011101
To decode 11011101: ?

Uniquely decodable

• Uniquely decodable is a prefix free code
if no codeword is a proper prefix of any other

• For example {1, 100000, 00} is uniquely
decodable, but is not a prefix code
– consider the codeword {…1000000001…}

• Practical we prefer prefix code (why?)

S Code

a 00
b 01
c 10
d 110
e 111

Example

S Code

a 00
b 01
c 10
d 110
e 111

Example

0100010011011000

S Code

a 00
b 01
c 10
d 110
e 111

babadda

Example
								

	0100010011011000

Static codes

• Mapping is fixed before transmission
– E.g., Huffman coding

• probabilities known in advance

Dynamic codes

• Mapping changes over time
– i.e. adaptive coding

• Attempts to exploit locality of reference
– periodic, frequent occurrences of messages
– e.g., dynamic Huffman

Traditional evaluation criteria

• Algorithm complexity
– running time

• Amount of compression
– redundancy
– compression ratio

• How to measure?

Measure of information

• Consider symbols si and the probability of
occurrence of each symbol p(si)

• In case of fixed-length coding , smallest
number of bits per symbol needed is
– L ≥ log2(N) bits per symbol
– Example: Message with 5 symbols need 3

bits (L ≥ log25)

Variable length coding
• Also known as entropy coding

– The number of bits used to code symbols in
the alphabet is variable

– E.g. Huffman coding, Arithmetic coding

Entropy

• What is the minimum number of bits per
symbol?

• Answer: Shannon’s result – theoretical
	minimum average number of bits per code
	word is known as Entropy (H)

Entropy example

• Alphabet S = {A, B}
– p(A) = 0.4; p(B) = 0.6

• Compute Entropy (H)
– -0.4*log20.4 + -0.6*log20.6 = .97 bits

• Maximum uncertainty (gives largest H)
– occurs when all probabilities are equal

57

Example: ASCII

58

	 	ASCII
			

• Example: SPACE is 32 or 00100000. ‘z’ is
	122 or 01111010

• 256 symbols, assume same probability for
	each

• P(s) = 1/256
• Optimal length for each char is log 1/P(s)

	= log 256 = 8 bits

David A. Huffman

David Huffman is best known for the
	invention of Huffman code, a highly
	important compression scheme for
lossless variable length encoding. It was
the result of a term paper he wrote while a
graduate student at the
Massachusetts Institute of Technology
(MIT)…

From: Wikipedia

Huffman coding algorithm

1. Take the two least probable symbols in
the alphabet
(longest code words, equal length, differing in

last digit)

2. Combine these two symbols into a single
symbol

3. Repeat

S Freq

a 30
b 30
c 20
d 10
e 10

Example: Huffman coding

S Freq Huffman

a 30
b 30
c 20
d 10
e 10

Example

30
	a

20
	c

30
	b

10
	d

10
	e

S Freq Huffman

a 30
b 30
c 20
d 10
e 10

Example

30
	a

20
	c

30
	b

10
	d

10
	e

20

S Freq Huffman

a 30
b 30
c 20
d 10
e 10

Example

30
	a

20
	c

30
	b

10
	d

10
	e

20

40

S Freq Huffman

a 30
b 30
c 20
d 10
e 10

Example

30
	a

20
	c

30
	b

10
	d

10
	e

20

40 60

S Freq Huffman

a 30
b 30
c 20
d 10
e 10

Example

30
	a

20
	c

30
	b

10
	d

10
	e

20

40 60

100

S Freq Huffman

a 30 00
b 30 01
c 20 10
d 10 110
e 10 111

Example

20

40 60

100

0

	 	0
						
30
	a

	 	0
							
20
	c

	 	0
		
10
	d

1
			
	10
		e

1

1

1
						
	30
		b

	Average length L
			

= (30*2 + 30*2 + 20*2 + 10*3 + 10*3) / 100
= 220 / 100
= 2.2

	Average length L
			

= (30*2 + 30*2 + 20*2 + 10*3 + 10*3) / 100
= 220 / 100
= 2.2

Better than using fixed length 3 bits
for 5 symbols.

H

	 	Entropy
			

= -0.3 * log 0.3 + -0.3 * log 0.3 + -0.2 * log 0.2
+ -0.1 * log 0.1 + -0.1 * log 0.1
= -0.3*(-1.737) + -0.3*(-1.737) + -0.2 * (-
2.322) + -0.1 * (-3.322) + -0.1 * (-3.322)
				

= 0.3 log 10/3 + 0.3 log 10/3 + 0.2 log 5 + 0.1
log 10 + 0.1 log 10
= 0.3*1.737 + 0.3*1.737 + 0.2* 2.322 +
0.1*3.322 + 0.1*3.322
= 2.17
		

Another example
• S={a, b, c, d} with freq {4, 2, 1, 1}

• H = 4/8*log22 + 2/8*log24 + 1/8*log28 + 1/8*log28

• H = 1/2 + 1/2 + 3/8 + 3/8 = 1.75

• a => 0 b => 10 c => 110 d => 111
• Message: {abcdabaa} => {0 10 110 111 0 10 0 0}

• Average length L = 14 bits / 8 chars = 1.75
• If equal probability, i.e. fixed length, need log24 = 2 bits

S Freq Huffman

a 3021
b 3021
c 2020
d 1019
e 1019

Huffman coding

Total: 100

S Freq Huffman

a 21 00
b 21 10
c 20 01
d 19 110
e 19 111

a b c d e

38

59

41

	0
						
21

	0
		
19

1
			
	19

	0
								
21

1

Huffman coding
						

	 	100
		

	 	 	1
	0

1
						
	20

H
														
L

	Huffman optimal?
			

= 0.21 log 100/21 + 0.21 log 100/21 + 0.2 log
5 + 0.19 log 100/19 + 0.19 log 100/19
= 0.21*2.252 + 0.21*2.252 + 0.2* 2.322 +
0.19*2.396 + 0.19*2.396
= 2.32
= (21*2 + 21*2 + 20*2 + 19*3 + 19*3)/100
= 2.38

S Freq Huffman

a 30100000
b 306
c 202
d 101
e 101

Huffman coding

Total: 100010

S Freq Huffman

a 100000 0
b 6 10
c 2 110
d 1 1110
e 1 1111

100k
	a

	2
c

	6
b

	1
d

	1
e

2

4
0

0 1

0

1

1

Huffman coding
				

	 	100010
	 	 	1 			
	 	 	 	10

		
	0

H
											
L

	Huffman optimal?
			

= 0.9999 log 1.0001 + 0.00006 log 16668.333
+ … + 1/100010 log 100010
≈ 0.00
				

= (100000*1 + …)/100010
≈ 1

	 		Problems of Huffman coding
			

• Huffman codes have an integral # of bits.
	 	– E.g., log (3) = 1.585 while Huffman may need
	 		 	2 bits

• Noticeable non-optimality when prob of a
	symbol is high.

					

=> Arithmetic coding

Example extracted from February, 1991 issue of Dr. Dobb’s Journal

	Arithmetic coding
						
Message to encode:
	
BILL GATES

Arithmetic coding

Arithmetic coding algorithm
Set low to 0.0
Set high to 1.0
While there are still input symbols do

get an input symbol
code_range = high - low.
high = low + range*high_range(symbol)
low = low + range*low_range(symbol)

End of While
output low or a number within the range

Arithmetic coding

	Example
			

Consider the second L as new char:
					

code_range = 0.258 – 0.256 = 0.002
high = 0.256 + 0.002*0.8 = 0.2576
low = 0.256 + 0.002*0.6 = 0.2572

Decoding algorithm
get encoded number
Do

find symbol whose range straddles the encoded
number
output the symbol
range = symbol high value - symbol low value
subtract symbol low value from encoded number
divide encoded number by range

until no more symbols

Arithmetic coding

	Example
			

At the first L, encoded number is 0.72167752.
output the first L
				

range = 0.8 – 0.6 = 0.2
				

encoded number = (0.72167752 – 0.6) / 0.2
= 0.6083876

	Advantage of arithmetic coding
		
Assume: A 90% END 10%
	
To encode: AAAAAAA

	Advantage of arithmetic coding
		
Assume: A 90% END 10%
	
To encode: AAAAAAA

e.g., 0.45

Lossless compression revisited

• Run-length coding
• Statistical methods

– Huffman coding
– Arithmetic coding

• Dictionary methods
– Lempel Ziv algorithms

Static vs Adaptive

Dictionary coding

• Patterns: correlations between part of the
data

• Idea: replace recurring patterns with
references to dictionary

• LZ algorithms are adaptive:
– Universal coding scheme
– Single pass (dictionary created on the fly)
– No need to transmit/store dictionary

92

	 	LZ77 & LZ78
			

• LZ77: referring to previously processed
	data as dictionary

• LZ78: use an explicit dictionary

93

Lempel-Ziv-Welch (LZW) Algorithm

• Most popular modification to LZ78
• Very common, e.g., Unix compress, GIF87
• Read http://en.wikipedia.org/wiki/LZW

regarding its patents
• Fixed-length references (12bit 4096

entries)
• Static after max entries reached

LZW Compression
w = NIL;

while (read a character k)
{

if wk exists in the dictionary
w = wk;
else

add wk to the dictionary;
output the code for w;
w = k;

}

	Example
					
Input: ^WED^WE^WEE^WEB^WET
		
	 	w=nil	
	 	while(read a character k){	
	 	 	if wk exist in the dic	
	 	 	 	w = wk;	
	 	 	else	
	 	 	 	add wk to the dic	
	 	 	 	output the code for w	
	 	 	 	w=k;	
	 	}	

96

LZW Compression

• Original LZW used dictionary with 4K
	entries, first 256 (0-255) are ASCII codes.

• In the above example, a 19 symbols
	reduced to 7 symbols & 5 code. Each
	code/symbol will need 8+ bits, say 9 bits.

• Reference: Terry A. Welch, "A Technique
	for High Performance Data Compression",
	IEEE Computer, Vol. 17, No. 6, 1984, pp.
	8-19.

97

LZW Decompression
read a character k;

output k;
w = k;
while (read a character/code k)

{
entry = dictionary entry for k;
output entry;
add w + entry[0] to dictionary;
w = entry;

}

98

	Example
					
Input: ^WED<256>E<260><261><257>B<260>T

read a char k;	
output k;	
w=k;	
while(read a char/code k){	
	entry = dic entry for k;	
	output entry;	
	add w+entry[0] to dic;	
	w=entry;	
}	

99

	 	LZW implementation
			

• Parsing fixed number of bits from input is
	easy

• Fast and efficient

More online readings
http://www.ics.uci.edu/~dan/pubs/DC-Sec1.html
http://marknelson.us/1991/02/01/arithmetic-coding-statistical-modeling-data-compression/

	The end
			

We have covered:

•
•
•
•
•

Course overview
Prefix code, entropy
Huffman code
Arithmetic code
LZW
					

	101

