
Improve Run Generation
•  Overlap input,output, and internal CPU work.
•  Reduce the number of runs (equivalently, increase

 average run length).

DISK

MEMORY

DISK

DISK

MEMORY

DISK

New Strategy

•  Use 2 input and 2 output buffers.
•  Rest of memory is used for a min loser tree.

Input 1 Input 0

Output 0 Output 1

Loser Tree

•  Actually, 3 buffers adequate.

Steady State Operation

Read from
 disk

Write to
 disk

Run
 generation

•  Synchronization is done when the active input buffer gets
 empty (the active output buffer will be full at this time).

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

3

8

O0 O1

I0 I1

Initialize

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

1

7

Initialize

O0 O1

I0 I1

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

1

6

2

9

Initialize

O0 O1

I0 I1

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

2

8

1

6

4

9

Initialize

O0 O1

I0 I1

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

1

6

4

9

Initialize

O0 O1

I0 I1

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

2

6

4

9

Initialize

O0 O1

I0 I1

Generate Run 1

1 4 3 6 8 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

2

6

4

9

O0 O1

I0 I1

3

5

4

Generate Run 1

4 3 6 8 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

2

6

4

9

O0 O1

I0 I1

3

5

4

1

3

3

5

O0

2

3

Generate Run 1

4 3 6 8 5 7 3 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

3

6

4

9

O1

I0 I1

3

5

4

1

5

4

4 5

O0

2

3

Generate Run 1

4 3 6 8 5 7 3 6 9 4 5

2

5 8

4

6

8

3

5

3

7

2

5

5

8

3

6

4

9

O1

I0 I1

3

5

4

1

5

4

5

O0

2

3 4 3 6 8 5 7 3 6 9 4 5

2

5 8

4

6

8

3

5

3

7

2

5

5

8

3

6

4

9

O1

I0 I1

1

5

4

4

1

9

2

5

O0

2

3 4 3 6 8 5 7 3 6 9 4 5

2

5 8

4

6

8

3

5

3

7

4

5

5

8

3

6

4

9

O1

I0 I1

1

5

4

4

1

9

2

Continue With Run 1

O1

3

4 5

O0

2

4 3 6 8 5 7 3 6 9 4 5

2

5 8

4

6

8

3

5

3

7

4

5

5

8

4

6

4

9

I0 I1

1

5

1

1

9

2

Continue With Run 1

1

5

1

O1

3

4 5

O0

2

4 3 6 8 5 7

3

6 9 4 5

2

5 8

4

6

8

3

5

3

7

4

5

5

8

4

6

4

9

I0 I1

1

5

1

1

9

2

Continue With Run 1

5

9

9

5

7

9 1

O1

3

4 5

O0

2

4

3

6 8 5 7

3

6 9 4 5

2

5 8

4

6

8

3

5

3

7

4

5

5

8

4

6

4

9

I0 I1

1

5

1

1

9

2

Continue With Run 1

5

9

5

7

2

9 1

O1

3

4 5

O0

4

3

6 8 5 7

3

6 9 4 5 5 8

4

6

8

3

5

3

7

4

5

5

8

4

6

4

9

I0 I1

5

1

6

1

3

5

9

5

7

2

9 1

O1

3

4 5

O0

4

3

6 8 5 7

3

6 9 4 5 5 8

4

6

8

3

5

3

7

4

5

5

8

4

6

4

9

I0 I1

5

1

6

1

3

5

9

5

7

2

Continue With Run 1

2

2 9 1

O1

3

4 5

O0

4

3

6 8 5 7

3

6 9 4 5 5 8

4

6

8

3

5

3

7

4

5

5

8

4

6

4

9

I0 I1

5

1

6

1

3

5

9

5

7

Continue With Run 1

2

6

6

5

2 9 1

O1

3

4 5

O0

4

3

6 8 5 7

3

6 9

4

5 5 8

4

6

8

3

5

3

7

4

5

5

8

4

6

4

9

I0 I1

5

1

6

1

3

5

9

5

7

Continue With Run 1

2

6

6

5

1

1

9

5

•  Let k be number of external nodes in loser
 tree.

•  Run size >= k.
•  Sorted input => 1 run.
•  Reverse of sorted input => n/k runs.
•  Average run size is ~2k.

•  Memory capacity = m records.
•  Run size using fill memory, sort, and output

 run scheme = m.
•  Use loser tree scheme.

§ Assume block size is b records.
§ Need memory for 4 buffers (4b records).
§  Loser tree k = m – 4b.
§ Average run size = 2k = 2(m – 4b).
§  2k >= m when m >= 8b.

•  Assume b = 100.

m

600

1000

5000

10000

k

200

 600

4600

 9600

2k

400

1200

9200

19200

•  Total internal processing time using fill
 memory, sort, and output run scheme
 = O((n/m) m log m) = O(n log m).

•  Total internal processing time using loser
 tree = O(n log k).

•  Loser tree scheme generates runs that differ
 in their lengths.

4 3 6 9

Merging Runs Of Different Length

4 3

6

9

7 15

22

7

13

22

Improve Run Merging

•  Reduce number of merge passes.
§ Use higher order merge.
§ Number of passes

 = ceil(logk(number of initial runs))
 where k is the merge order.

•  More generally, a higher-order merge
 reduces the cost of the optimal merge tree.

Improve Run Merging
•  Overlap input, output, and internal merging.

DISK

MEMORY

DISK

Steady State Operation

Read from
 disk

Write to
 disk

Merge

DISK

MEMORY

DISK

Partitioning Of Memory

•  Need exactly 2 output buffers.

I1 I0

O0 O1

Loser Tree

… Ib

•  Need at least k+1 (k is merge order) input buffers.
•  2k input buffers suffice.

Number Of Input Buffers

•  When 2 input buffers are dedicated to each
 of the k runs being merged, 2k buffers are
 not enough!

•  Input buffers must be allocated to runs on
 an as needed basis.

Buffer Allocation

•  When ready to read a buffer load, determine
 which run will exhaust first.
§  Examine key of the last record read from each of

 the k runs.
§  Run with smallest last key read will exhaust first.

•  Next buffer load of input is to come from run
 that will exhaust first, allocate an input buffer
 to this run.

Buffer Layout
Output
 buffers

Input buffer
 queues
 k=9

F0 F1 F2 F3 F4 F5 F6 F7 F8

R0 R1 R2 R3 R4 R5 R6 R7 R8

Pool of free input buffers

Initialize To Merge k Runs
•  Initialize k queues of input buffers, 1 queue per

 run, 1 buffer per run.
•  Input one buffer load from each of the k runs.
•  Put k – 1 unused input buffers into pool of free

 buffers.
•  Set activeOutputBuffer = 0.
•  Initiate input of next buffer load from first run to

 exhaust. Use remaining unused input buffer for
 this input.

The Method kWayMerge

•  k-way merge from input queues to the active output
 buffer.

•  Merge stops when either the output buffer gets full or
 when an end-of-run key is merged into the output
 buffer.

•  If merge hasn’t stopped and an input buffer gets
 empty, advance to next buffer in queue and free
 empty buffer.

Merge k Runs
repeat
 kWayMerge;
 wait for input/output to complete;
 add new input buffer (if any) to queue for its run;
 determine run that will exhaust first;
 if (there is more input from this run)
 initiate read of next block for this run;
 initiate write of active output buffer;
 activeOutputBuffer = 1 – activeOutputBuffer;
until end-of-run key merged;

What Can Go Wrong?

•  k-way merge from input queues to the active output
 buffer.

•  Merge stops when either the output buffer gets full or
 when an end-of-run key is merged into the output
 buffer.

•  If merge hasn’t stopped and an input buffer gets
 empty, advance to next buffer in queue and free
 empty buffer. There may be no next buffer in the queue.

What Can Go Wrong?
repeat
 kWayMerge;
 wait for input/output to complete;
 add new input buffer (if any) to queue for its run;
 determine run that will exhaust first;
 if (there is more input from this run)
 initiate read of next block for this run;
 initiate write of active output buffer;
 activeOutputBuffer = 1 – activeOutputBuffer;
until end of run key merged;

There may be
 no free input
 buffer to read
 into.

Initializing For Next k-way Merge

Change
if (there is more input from this run)
 initiate read of next block for this run;
to
if (there is more input from this run)
 initiate read of next block for this run;
else
 initiate read of a block for the next k-way merge;

