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• Agents play iterated public goods game in multiplex networks with limited and partible resources.
• High degree diversity in one layer promotes cooperation in multiplex networks.
• Degree differences between conjoint nodes encourage cooperative behaviors.
• A greedy-first mechanism that facilitates the emergence of cooperation is proposed.
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a b s t r a c t

In this paper, we try to explain themaintenance of cooperation inmultiplex networks with
limited and partible resources of agents: defection brings larger short-term benefit and
cooperative agents may become defective because of the unaffordable costs of cooperative
behaviors that are performed in multiple layers simultaneously. Recent studies have
identified the positive effects of multiple layers on evolutionary cooperation but generally
overlook the maximum costs of agents in these synchronous games. By utilizing network
effects and designing evolutionary mechanisms, cooperative behaviors become prevailing
in public goods games, and agents can allocate personal resources across multiple layers.
First, we generalize degree diversity into multiplex networks to improve the prospect for
cooperation. Second, to prevent agents allocating all the resources into one layer, a greedy-
first mechanism is proposed, in which agents prefer to add additional investments in the
higher-payoff layer. It is found that greedy-first agents can perform cooperative behaviors
in multiplex networks when one layer is scale-free network and degree differences
between conjoint nodes increase. Our work may help to explain the emergence of
cooperation in the absence of individual reputation and punishment mechanisms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most critical problems in evolutionary dynamics is to find the reason for the maintenance of cooperative
behaviors when defective behaviors can lead to larger short-term benefits [1,2]. Recently, the empirical resolution of
different linking types has been improved [3,4], and the real social systems can be described as a superposition of
several complex social networks, which is commonly named as multiplex networks [5–9]. Many studies have generalized
evolutionary games into multiplex networks and accounted for the positive effects of multiplex structure on evolutionary
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Fig. 1. Illustration of multiplex networks.

cooperation [10–17]. Some studies also consider several ways of linking different networks, which focus on the effects of the
interconnections among different layers [18,19]. In conjoint layers of multiplex networks, each agent is usually expected to
cooperate inmultiple games simultaneously. However, fewworks have considered the ‘‘payment capability’’which indicates
the maximum disposable resources (costs) of the agent and the restriction between costs of multiple games. The limited
resources of agents are common restrictions in many multi-agent systems [20,21] and real social systems [3].

This raises a fundamental problem for evolutionary cooperation in multiplex networks: How do the limited resources of
agents affect the positive effects ofmultiplex structure on cooperation evolution? Because of larger short-termbenefits, defective
behaviors can be easily imitated. Therefore, can cooperative behaviors finally disappear if some agents have to defect in
partial interactions due to the unaffordable costs of cooperation in all the interactions?
In this case, there are two defective temptations that can inhibit cooperative behaviors in a certain layer. The first temptation
is the higher temporal payoffs of defective neighbors, which is inherent in the maintenance of evolutionary cooperation
[1,2,22]. Most present studies focus on network reciprocity of multiplex structure which means that cooperative behaviors
can exist and diffuse if agents can aggregate into cooperative clusters [23]. The second temptation originates in different
payoffs of allocated resources in multiple layers, which may lead to the disappearance of cooperation in the lower-payoff
layers. To ensure the non-zero payoff in some layers, agents should contribute parts of resources in multiple layers or adopt
biased allocation strategies in different layers. Therefore, it is necessary to design efficient mechanisms to induce proper
strategies of resource allocation in multiple layers.

Our work utilizes the effects of network structure and designs evolutionary mechanisms to ensure the cooperative
behaviors in iterated public goods games (PGGs)with limited and partible resources of agents. First, to defeat the temptation
of defective neighbors in a certain layer, we generalize degree diversity [24] into multiplex networks. Second, we design a
greedy-first evolutionarymechanism to prevent the disappearance of cooperation in the lower-payoff layer. The greedy-first
agents prefer to imitate the allocation strategies of neighbors in the higher-payoff layer. Correspondingly, a generous-first
mechanism, that means agents tend to improve the payoffs in the lower-payoff layer, is also proposed to highlight the effect
of greedy-first mechanism.

Specifically, we give specific conditions to analyze how degree diversity and greedy-first mechanism can promote
cooperative behaviors in multiplex networks. It is worth noting that Santos et al. [24] firstly introduce the degree diversity
in PGGs, which is played in the single-layer network with binary contributions of resources. In this paper, we further extend
the close relationship between degree diversity and themaintenance of cooperation from two additional perspectives. First,
cooperative behaviors in multiplex networks can be promoted if degrees of nodes in one layer are highly diverse. Second,
evolutionary cooperation can also be facilitated by the differences between degrees of conjoint nodes in multiple layers.
Moreover, greedy-first mechanism utilizes the human instinct of searching higher benefits and may help to understand
the emergence of cooperation. In particular, our work suggests that cooperative behaviors can be controlled by varying the
degree diversity in multiplex networks.

2. Model statement

2.1. Topology and agent

Multiplex networks consist of two or more layers. In our model, we only consider the case of duplex networks which
have two layers denoted by L1 and L2, and each layer indicates one type of relationship between humans. Parallel graphs,
which are conjoint by cross-layer paths, are usually used to represent multiplex networks [8,9]. As shown in Fig. 1, each
agent represents a pair of conjoint nodes and is linked with different sets of agents in the duplex layers. For agent i, the
notation NL1

i (NL2
i ) denotes the set of i and its neighbors, and kL1i (kL2i ) denotes the degree of i in L1 (L2), respectively.

Agent i possesses a constant amount of resources Re. For the sake of simplicity, Re is identical for all the agents and set
as one unit. The notations cL1i and cL2i indicate the percentage of resources that are allocated in each layer. Thus, cL1i ≥ 0,
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cL2i ≥ 0, and cL1i + cL2i ≤ 1. The above three inequations show the interdependent costs of multiple games in the duplex
layers, which are the fundamental limitations of evolutionary dynamics.

To reduce parameter spaces of allocation strategies, cL1i and cL2i are discrete and the multiple of the variation 0.1, such
as cL1i = 0.3, cL2i = 0.7 or cL1i = 0.5, cL2i = 0.2. Therefore, there are 66 combinations of allocation strategies. Before
evolutionary dynamics begins, initial strategies of agents are randomly selected from these combinations. In our model, the
agent in multiplex networks is defective if cL1i = cL2i = 0, and i is more cooperative than j in L1 if cL1i > cL1j . If cL1i + cL2i > 0
and cL1i × cL2i = 0, agent i is partially cooperative (biased cooperation).

2.2. Public goods game

In order to clearly describe iterated public goods games in multiplex networks, it is necessary to introduce the general
principle of PGG. In the classical public goods game, every cooperator contributes a part of resource c , which is nonzero
and not larger than the total amount of resources; and defectors contribute nothing to the public pot [25–28]. The total
contribution is multiplied by an enhancement r , which is generally larger than one and less than the number of players. The
result is equally distributed among all the players. In the classical public goods game, all players are unstructured (or well-
mixed). Santos et al. [24] consider the connectivity of human and extend the PGG into social networks: each agent receives
contributions of neighbors and shares the enhanced benefit between itself and neighbors. For an agent i with degree k, i
divides its contributed resources into k + 1 parts equally and distributes them to k + 1 PGGs which center on i and its
neighbors. In the PGG proposed by Santos et al. [24], cooperators contribute the total resources at once, where only the
single-layer social network is analyzed.

We generalize the PGGproposed by Santos et al. intomultiplex networkwith the consideration of the limited and partible
resources. In each layer, the agent distributes the resources between itself and its neighbors and participates in all PGGs [24].
The payoff of the agent in one layer depends on the number of the neighbors in the same layer, the total amount of resources
that it receives and the enhancement factor. In each PGG, the payoff of the agent is calculated for the following processes:
first, the total amount of resources received by the central agent of this PGG is multiplied by the enhancement factor; and
then, the result subtracts the amount of resources that the agent contributed to this PGG. Therefore, each agent i contributes
cL1i /


kL1i + 1


resources in each PGG in L1 and the payoff PL1

i of i in L1 is given by

PL1
i =


j∈N

L1
i


 r

kL1j + 1


x∈N

L1
j

cL1x
kL1x + 1

 −
cL1i

kL1i + 1

 (1)

where the payoffs of i in kL1i +1 PGGs in L1 are accumulated. The payoff PL2
i is calculated by the same process.We also assume

that the enhancement factors are identical in the duplex layers of multiplex networks. For the convenience of readers, the
major variables are listed in Table 1.

2.3. Greedy-first mechanism

Evolutionarymechanismdetermines the basic rulewhich governs the agent to update the strategy based on the imitation
of the neighbor’s strategy which can bring more benefit [24,12]. The strategies of agents are asynchronously updated. After
each game round, one agent is randomly selected to update the behavior strategy. Because of the limitation of connectivity,
the agent can only perceive the partial strategies of neighbors in one layer instead of the entire allocation strategies in
multiple layers.

At first, the randomly selected agent i has to choose one layer frommultiplex networks, and then imitates the allocation
strategy of a neighbor. We design a greedy-first mechanism, in which agent i prefers to update the allocation strategy in the
higher-payoff layer according to a probability determined by the Fermi function

Proi (L1 |L2 ) =
1

1 + exp


PL1
i − PL2

i


/K

 . (2)

The factor K = 0.1 quantifies the uncertainty associated with the strategy adoption process [12,13]. Agent i decides to
update L2 with Proi(L1|L2) and choose L1 with 1 − Proi(L1|L2). Then, supposing that L1 is selected, i adopts the allocation
strategy of a random neighbor j in L1 with the probability Pro


cL1j → cL1i


also determined by the Fermi function

Pro

cL1j → cL1i


=

1

1 + exp


PL1
i − PL1

j


/K

 . (3)



502 Z. Li et al. / Physica A 467 (2017) 499–507

Fig. 2. Illustration of simplified layer with two kinds of agents.

Table 1
Major notation used in this paper.

Symbol Explanation

NL1
i (NL2

i ) The set of i and its neighbors in L1 (L2)

kL1i (kL2i ) The degree of i in L1 (L2)
Re The constant amount of resources

cL1i (cL2i ) The percentage of resources that i allocates in L1 (L2)
r The enhancement factor in PGGs

PL1
i (PL2

i ) The payoff of i in L1(L2)

If i adopts the allocation strategy of j in L1 and the sum of the resources allocated in two layers is larger than Re, the
percentage of resources allocated in L2 needs to be changed: cL2i = Re − cL1i . On the other hand, cL1i remains unchanged with

the probability 1 − Pro

cL1j → cL1i


.

The greedy-firstmechanism indicates the nature of searching higher benefit when the individual is in the face ofmultiple
choices. To highlight the effect of greedy-first mechanism, a generous-first mechanism is also proposed: i decides to update
L1 with Proi(L1|L2) and choose L2 with 1−Proi(L1|L2). This mechanism indicates that the agent wants to increase the benefit
in the lower-payoff layer by imitating the allocation strategy of an agent with higher payoff.

3. Analysis of evolutionary dynamics

It is necessary to theoretically analyze evolutionary dynamics with a given condition. In this section, we first prove that
greedy-first mechanism is superior to generous-first mechanism. Second, we show that degree diversity is important to
promote cooperative behaviors in multiplex networks in the case that the resources are limited and partible.

Because it is very difficult and complicate to demonstrate the detail of the evolutionary PGG dynamics on complex
networks, it is common to resort to a simple and typical case model—a single agent a is in the cluster of other homogeneous
agents b without any short and closed loops. The degree of agent b is kb (one agent a and kb − 1 agent b), and agent a has
kab-neighbors. A brief illustration is shown in Fig. 2. Agent a contributes ca to the network while agent b contributes cb.
Because most agents hold the allocation strategy cb, it is very disadvantageous for agent a to spread the allocation strategy
ca unless the payoff of agent a is considerably larger than the one of agent b. According to the rule of PGGs described in
Section 2.2, we discuss how the cooperative strategy of agent a can exist in the local environment.

In this scenario, the payoffs of agent a and b are given by

Pa =
r

ka + 1


ca

ka + 1
+

kacb
ka + 1


+

rka
kb + 1


ca

ka + 1
+

kbcb
kb + 1


− ca

Pb =
r

ka + 1


ca

ka + 1
+

kacb
ka + 1


+

r
kb + 1


ca

ka + 1
+

kbcb
kb + 1


+

(kb − 1) rcb
kb + 1

− cb.
(4)

Based on the above expressions, the allocation strategy of agent a stays more stable if the payoff of agent a is larger than
that of agent b. It can be calculated that

∂ (Pa − Pb)
∂ka

= rcb +
rca

(ka + 1)2
> rcb > 0. (5)
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Therefore, in order to make sure that Pa > Pb, a larger degree ka is preferred. In particular, if ka = kb = k, the difference
between the two payoffs is calculated as

Pa − Pb

ka=kb=k =
cb − ca
kb + 1


k + 1 − r

k − 1
k + 1


. (6)

In this situation, agent a can only contribute less resources than agent b to maintain a high payoff. Meanwhile, if ka > kb,
agent amay exploit the advantages of high degree: the payoff of agent a increaseswith a larger degree ka. Then, the allocation
strategy of agent amay remain unchanged evenwith a higher contribution of resources and agent bmay imitate the strategy
of agent a. Consequently, the total amount of contributed resources in the network increases. In other words, agents can
adopt a more cooperative strategy with the higher probability if the diversity in degree distribution increases. However,
the degrees between nodes are nearly the same (ka − kb ≈ 0) in homogeneous networks, such as Erdős–Rényi random
network [29] and small-world network [30]. As a result, the agent contributes fewer and fewer amount of resources because
only more defective behavior leads to the higher payoff compared with linking neighbors.

According to the relation (5), the payoff of agent awith the cooperative strategy becomes larger than the one of agent b if
ka−kb and r further increase. Therefore, the hub nodes in the scale-free network are important to evolutionary cooperation.
In the local multiple PGGs, cooperative hubs play important roles, and defective strategy is restrained among agents with
low degrees. Thus, diversity helps to promote cooperation in a single layer.

It is worth noting that Santos et al. [24] firstly introduce the degree diversity into iterated public goods games with the
binary contribution of resources (c = 0 or 1). Our work extends the model and proves the importance of degree diversity if
resources are limited and partible. Based on the above analyses, we show that degree diversity of a single layer is important
to the entire multiple networks.

On the other hand, the payoff of the agent in a certain layer is lower if the contributions of neighbors are lower. It is worth
noting that the agent adopts the allocation strategy of one of its neighbors in the layer if the agent successfully updates the
strategy. Then, it can be calculated that

∂Pa
∂cb

=
rka

kb + 1


1 +

1
ka + 1

−
1

kb + 1


> 0

∂Pa
∂ (cb − ca)

= 1 −
r

(ka + 1)2
+

rkakb
(kb + 1)2

>
rkakb

(kb + 1)2
.

(7)

As shown in the above expressions, there is a positive correlation between the average contribution cb of neighbors
and the payoff of agent a. Thus, a has a higher possibility of changing into a more cooperative allocation strategy. If the
evolutionary rule is generous-first, the agent in the lower-payoff layer is very sensitive to the defective behaviors because
only more defective behaviors (much lower cost than the average level in the layer) can bring higher payoff. Consequently,
the agent tends to adopt the defective strategy and cooperation behaviors gradually disappear.

However, greedy-first agents can update the allocation strategy based on a comparatively higher level of average
contributions, and it helps to improve the maintenance of cooperation in multiplex network. Therefore, greedy-first
mechanism is better than generous-first mechanism for the evolutionary dynamics.

According to all the above analyses, cooperative behaviors can be retained in the scale-free layer, which means that
a scale-free layer promotes cooperation in multiplex networks. Based on the greedy-first mechanism, agents prefer to
update the allocation strategy in the scale-free layer if the conjoint layer is homogeneous. As a result, the average level of
contributions in the scale-free layer can be kept; and cooperative behaviors in the other layer can also exist because agents
do not directly update the strategies although the average level of contributions is lower than the one in the scale-free layer.
This process helps to avoid the repeated defection in the lower-payoff (homogeneous) layer because defective strategies
are easily imitated. However, if the two layers of multiplex networks are both homogeneous, only the lower contribution
can lead to the higher payoff. This process certainly causes the disappearance of cooperation in all the layers of multiplex
networks.

4. Simulation

The evolutionary dynamics inmultiplex networks has been simulated on a computer.Multiplex networks are constructed
based on Erdős–Rényi model [29], small-world model [30] and scale-free model [31]. The scale-free layer (SF) leads to
the degree diversity in multiplex networks. The Erdős–Rényi random layer (ER) and small-world layer (SW) represent the
homogeneous networks. There are 10000 agents, and the average degree in each layer is 10. In the small-world layer, the
probability of interpolating between regular lattices is 0.1. In the scale-free layer, the number of seed nodes is 50 with an
average of five edges, and each subsequent node is added with five edges.

Two factors are used to roughly describe the level of cooperation in multiplex networks: the fraction of defective agents,
who contribute nothing in the duplex layers; and the fraction of agents, who contribute all of resources. The corresponding
results are drawn in line graphs. The details of evolutionary dynamics are described by the fraction of agents with different
allocation strategies and shown in 3D-surface graphs. The results are averaged over 100 realizations. Each realization
contains 10 million time steps.
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4.1. Diversity promotes cooperation

In this section, our aim is to show the positive effect of degree diversity on evolutionary cooperation in multiplex
networks. There are three types of multiplex networks which are denoted by SF+ER, SF+SW and SW+ER according to the
structures of the duplex layers. The enhancement factor r is varied from 0.5 to 10. Meanwhile, all agents are greedy-first.

As shown in Fig. 3(a), nearly all agents in SW+ER multiplex networks are defective when the enhancement factor is less
than 7.5. Meanwhile, the fraction of cooperative agents who contribute all the resources into SW+ER multiplex networks
is much less than the one in SF+ER or SF+SWmultiplex networks. It means that cooperative behaviors almost disappear in
SW+ER multiplex networks when enhancement factor is less than 7.5. The average degrees in the scale-free, small world
and random layers are all near 10. However, the scale-free layer can greatly improve the cooperative level in multiplex
networks.

Meanwhile, if the enhancement factor is larger than 7.5, the fraction of defective agents in SW+ER multiplex networks
reduces rapidly, and the fraction of cooperative agents who contribute all the resources largely increases in the three types
of multiplex networks. The increase of the enhancement factor greatly improves the payoffs of agents and reduces the
relative differences of payoffs between cooperative and defective agents. It finally facilitates the existence of cooperative
behaviors. However, as shown in Fig. 3(b), the small-world layer can induce more cooperative agents in multiplex networks
by comparing the fraction of cooperative agents in SF+ER multiplex networks and the one in SF+SW or SW+ER networks.
Network reciprocity can explain the advantage of the small world layer [23]. The local clustering coefficient of the small
world layer is much larger than the one of other layers. When the high value of the enhancement factor facilitates the
cooperative behaviors, agents in the small world layer have more probability to imitate cooperative neighbors because of
the local reinforcement [32].

4.2. How to conjoin two high-diversity layers

In order to promote cooperative behaviors in multiplex networks, what is the best method to conjoin two scale-free
layers? This section tries to provide somebasic suggestions to solve this problem. There are two types ofmultiplex networks:
Type I and Type II. In Type Imultiplex networks, the same set of agents is selected as seed nodes, and hubs are conjoint in the
duplex scale-free layers. In Type II multiplex networks, the nodes, whose degrees are the least in the first layer, are selected
as seed nodes in the other layer; and hub nodes are not conjoint in the duplex layers. Thus, the degrees of conjoint nodes in
Type II multiplex networks are more diverse than the one in Type I multiplex networks. The enhancement factor r is varied
from 0.5 to 10. The results are shown in Fig. 4.

It can be found that Type II multiplex networks are generally better than Type I multiplex networks. If the enhancement
factor is less than 2, the fraction of defective agents in Type II multiplex networks is larger than the one in Type I multiplex
networks. If the enhancement factor is larger than 2, there are more agents who contribute all the resources in Type II
multiplex networks. In fact, when the agent represents the conjoint hubs in the duplex layers, the percentage of allocated
resources in one layer is certainly less than the one in the other layer which can lead to the spread of less cooperative
behaviors (even defection) in one layer. Therefore, degree diversity between conjoint nodes is also important to improve
prospects for cooperation in multiplex networks.

4.3. Greed is better

Themain object of this section is to show that greedy-firstmechanism is better than generous-firstmechanism.Multiplex
networks consist of a scale-free layer and an Erdős–Rényi random layer. The enhancement factor r is varied from 0.5 to 10.

In Fig. 5(a), it can be found that there are more defective agents with generous-first mechanism. As the enhancement
factor r is varied from 0.5 to 10, the fractions of defective agents with the two mechanisms both decrease. When the
enhancement factor is lower than 4.5, all the agents in multiplex networks are defective if agents are generous-first.
Correspondingly,most of agents are not defective if evolutionary rule is greedy-first and the enhancement factor approaches
zero. Therefore, the critical threshold of the enhancement factor with generous-first mechanism, below which cooperative
behaviors disappear in multiplex networks, is much larger than the one with greedy-first mechanism.

The details of evolutionary dynamics with generous-first mechanism are present in Figs. 6 and 7. The enhancement
factors are 4 and 8, and the initial distribution of agents with different allocation strategies is drawn in Fig. 5(b). In Fig. 6,
cooperative behaviors quickly disappear in the duplex layers. At the time t = 1 million, only a very small fraction of agents
allocate very limited amount of resources (cL1i ≈ 0) in the scale-free layers, and all agents are defective at the time t = 10
million. In Fig. 7, it can be found that agents synchronously reduce the percentages of allocated resources in the duplex
layers. Finally, at the time t = 10 million, most agents are partially cooperative in the scale-free layer, and only very few
agents contribute more than half of the resources.

The details of evolutionary dynamicswith greedy-firstmechanism are shown in Fig. 8. The enhancement factors are 4 and
8, and only two snapshots are selected to save the space. It can be found that most agents are cooperative in the scale-free
layer and there are still many agents who allocate part of resources in the random layer. Therefore, it can be concluded that
greedy-first mechanism is better than generous-first mechanism and can greatly favor cooperative behaviors in multiplex
networks.
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Fig. 3. Fractions of defective and cooperative agents in SF+ER, SF+SW and SW+ER multiplex networks.

Fig. 4. Fractions of defective and cooperative agents in multiplex networks with two scale-free layers.

Fig. 5. (a) The final fractions of defective agents with greedy-first and generous-first mechanisms. (b) The initial distribution of agents with different
allocation strategies.



506 Z. Li et al. / Physica A 467 (2017) 499–507

Fig. 6. The details of evolutionary dynamics with generous-first mechanism, r = 4. (a) t = 1 million; (b) t = 10 million.

Fig. 7. The details of evolutionary dynamics with generous-first mechanism, r = 8. (a) t = 1 million; (b) t = 10 million.

Fig. 8. The details of evolutionary dynamics with greedy-first mechanism. (a) r = 4, t = 10 million; (b) r = 8, t = 10 million.

5. Discussion and conclusion

In this paper, we try to explain the maintenance of cooperation in evolutionary dynamics with limited and partible
resources in multiplex networks. It is found that degree diversity and greedy-first mechanism can defeat the temptation of
defective behaviors and avoid the extremely biased cooperation in a certain layer.

From two perspectives in multiplex networks, we further extend the positive effects of degree diversity (also known as
social diversity or network heterogeneity) on the maintenance of cooperation [24]. First, even if hub nodes only exist in one
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layer, the emergence of cooperation inmultiple layers can be promoted. It is because hub nodes can utilize the contributions
of numerous neighbors to cover the high costs of cooperative behaviors and then cooperation can spread among other nodes.
Second, degree diversity between conjoint nodes can also facilitate cooperative behaviors inmultiplex networks. This type of
degree diversity helps to avoid the conflict of allocating resources into multiple layers, and hub agents can be cooperative in
different layers. These conclusions provide essential principles and additional suggestions to construct multiplex networks
to favor cooperative behaviors besides the cluster and community structures based on network reciprocity [23].

Greedy-first mechanism helps to keep the cooperative behaviors in the higher-payoff layer and greatly reduce the
probabilities of agents to imitate the defective strategies in the lower-payoff layer. It indicates that cooperation in
evolutionary dynamics is not contradictory to the human instinct of searching higher benefit when individuals are in the
face ofmultiple choices. This instinct may cause that individuals pay close attention to different types of interaction in social
life and partly ignore some unimportant interactions because of the low payoffs. These spontaneous behaviors to maintain
the high payoffs in different types of interactions may finally lead to the emergence of cooperation in human social systems.
In fact, greedy-first mechanism cannot guarantee that all the agents entirely contribute individuals’ resources into multiple
layers. In real life, few rules can lead to the selfless crowd. The feasible method may be exploiting the instinct of searching
higher benefit to promote cooperative behaviors.
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