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Local Community Mining on Distributed and
Dynamic Networks from a Multiagent Perspective
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Abstract—Distributed and dynamic networks are ubiquitous
in many real-world applications. Due to the huge-scale, de-
centralized, and dynamic characteristics, the global toplogical
view is either too hard to obtain or even not available. So,
most existing community detection methods working on the
global view fail to handle such decentralized and dynamic lae
networks. In this paper, we propose a novel autonomy-oriered
computing method (AOCCM) from the multiagent perspective br
detecting community structures in the distributed environment.
In particular, AOCCM utilizes reactive agents to pick the
neighborhood node with the largest structural similarity as the
candidate node, and thus determine whether it should be adde
into local community based on the modularity gain. We furthe
improve AOCCM to a more efficient incremental version named
AOCCM-i for mining communities from dynamic networks.
AOCCM and AOCCM-i can be easily expanded to detect both
non-overlapping and overlapping global community structues.
Experimental results on real-life networks demonstrate tlat the
proposed methods can reduce the computational cost by avaidy
repeated structural similarity calculation and can still obtain the
high-quality communities.

Index Terms—Distributed and Dynamic Networks; Local Com-
munity Detection; Multiagent; Autonomy-Oriented Compulti ng;
Incremental Computing

I. INTRODUCTION

Real life networks, such as the transportation systems [
the computer science networks [2], and the online frien

to each other. Traditional methods, including hierardhi8h
partitional [9] and spectral clustering [10], [11], are éds

on this kind of definition. 3) The local-based definitions
compare the internal and external cohesion of a sub-graph.
The first recipe of this kind is LS-set [12], which stems
from social network analysis. The condition of LS-set istqui
strict and can be relaxed into the so-called weak definition
of community [13]. Some other local-based definitions can be
found in [15], [16], [17].

Since existing global-based and the node-similarity-Base
community detection approaches require clear picturebef t
entire graph structure, they are often described as glaial c
munity detection (in short as GCD henceforth). In those GCD
methods, the networks concerned are centralized (i.e/ e
processed in a centralized manner and with a global control)
instead of being distributed. However, in the real worldnga
applications involve distributed networks, in which resms
and controls are often decentralized. As they are basedeon th
structure-oriented view, the characteristics and effettocial
actors are neglected.

To consider the effects of actor characteristics, the actor
structure crossing view has been recently introduced into
community detection, especially applications of the local
% ,mmunity detection (LCD) or autonomy-oriented computing

AOC) [18], [19], [20]. The networks concerned by LCD/AOC

ship network systems (e.g., Twitter and Facebook) [3], [4Tethods can be distributed, and each actor in the networks

are composed of a large number of highly interconnect

i3y modeled as an agent who acts autonomously to find its

nodes/actors. And they often display a common topologidQcal community. In the work of Yang et al. [20], the commu-

feature-community structure. Discovering the latent camim

nity evolution has been introduced into the proposed AOC-i

ties therein is a useful way to infer some important function™&thod, in which the new community structure can be quickly

In general, a community should be thought of a set
nodes that have more and/or better-connected edges be

Gerived based on the previous one and the incremental letwor

te. Although existing LCD/AOC methods have already

its members than between its members and the remain@&pi€ved significant success, further study is still neeoted
of the network. The existing community definitions in th&€€King a nice balance between the high efficiency of local

literature can be roughly divided into three categories o

;search models and the high accuracy of detected communities

is global-based [5], [6], [7], the other is based on the nodéherefore, we proposed a novel autonomy-oriented comgutin

similarity [8], [9], [10], [11], and the third is local-badd12],

method from the multiagent perspective for detecting commu

[13], [14] 1) The global—based definitions consider thepglra nlty structures in the distributed environment, in whicheth

as a whole, and they follow the assumption that a graph
community structure if it is different from a random graph |.
null model. 2) The node-similarity-based definitions aredzh

HERY problems are carefully concerned:

« How to model the real-life networks in the distributed
environment?

the assumption that communities are groups of nodes similas How to effectively and accurately detect the local com-
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munity starting from an arbitrary distributed node?
« How to monitor the influence on a given local community
and incrementally compute its current structure?

Targeting at effectively solving these above problems, in
this paper, we propose a fully distributed system guided by
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AOC methodology for modeling decentralized networks. land external degree of a sub-graph. Both measurements can
this system, every node is assigned an autonomous agacttieve high recall but suffer from low precision due to
for local community detection. For the LCD task of eacincluding many outliers [15].
agent, a heuristic algorithm named AOCCM is presented, andSimilarity-based methods utilize similarities betweenles
then its incremental version called AOCCM:-i is designed fdao help evaluate the local community quality. LTE algorith-
handling community evolution. More specifically, our mainm [23] is a representative of similarity based methods, gisin
contributions are summarized in three-fold as follows: a well-designed metric for local community quality known as
1) We present a novel modularity gain criterion, based okightness. There are a few alternative similarity-basettiose
which a heuristic algorithm named AOCCM is designe@uch as VSP [24] and RSS [25] that can also help evaluate
for the LCD task of each agent. The proposed methdde local community quality, although they are not origiyal
is able to start from an arbitrary node in a distributedesigned for LCD.
network, and repeats two iterative stepp@at e and Some multiagent technologies have been introduced into
Joi n) until the local community has reached its concommunity detection [26], [27], in which, each actor in the
vergent status or the agent’s clock time is over. networks is modeled as an agent and acts autonomously to to
2) We expand AOCCM to a more efficient incremenfind its community. For example, Chen et al. [28] formulated
tal method (AOCCM-i) for mining communities fromthe agents’ utility by the combination of a gain function
dynamic and distributed networks. The process @hd a loss function and make agents select communities
AOCCM-i is an iterative process consisting of a serieBy a game-theoretic framework to achieve an equilibrium
of discrete evolutionary cycles. In each cycle, the nefer interpreting a community structure. To consider in the
objective can be incremental updated based on the peéstributed experiment, Yang et al. [20] utilized reactagents
vious results and the dynamic changes of the networko make distributed and incremental mining of communities
3) Based on the local communities detected by AOCCM &ased only on their local views and interactions.
AOCCM-i, we further propose two global versions for Our new autonomy-oriented computing method (AOCCM)
non-overlapping and overlapping community detectionts also based on the multiagent perspective, in which, the
Thorough experiments on real-life networks demonstraiecal search model of each agent is also an extension of
that the proposed methods can keep a nice balaribe similarity model. However, in comparison to the above
between the high accuracy and short running time. approaches which calculate the quantitative metrics feryev

The remainder of the paper is organized as follows: Segode in the neighbor sets, the structural similarity of egain
tion Il presents the related work about autonomy-orient&i nodes in AOCCM is calculated only once. By introducing
computing and dynamic network mining. In Section I, wéhe notion of modularity gain, which is seen as a quantified
give a problem definition of distributed community miningeriterion to decide whether the candidate node can be added
and the basic ideas behind our method. Section 1V introdudg¥ the local community or not, the effectiveness of AOCCM
the AOC-based method for community mining. In Section \i$ very high.
we validate the proposed methods using some real-world
networks, an_d examine its performances in detail._We furthg Dynamic network mining
present an incremental AOC method for dynamic network

mining in Section VI, and finally conclude this paper in Recently, finding communities in dynamic networks has
Section VII. gained more and more attention. A family of events on both

communities and individuals have been introduced in [29]
Il. RELATED WORK to characterize evolution of communities. An evolutionary
Here we discuss related work from two areas: autonc’mw_ersion of the spectral cIust_ering_ algorithms has b_eeriyfirst
. . . L Efroposed by Chi et al. [30], in which the graph cut is used as
oriented computing, and dynamic network mining. a metric for measuring community structures and community
) ) evolutions. Their work has been further expanded by Lin et
A. Autonomy-oriented computing al. [31], in which, a graph-factorization clustering altor
Early work in LCD can be adopted to autonomy-orientech named FacetNet has been proposed to analyze dynamic
computing, which can be classified into two main cateietworks. The above mentioned studies often adopted a two-
gories: namely, 1) degree-based methods, and 2)simiarisfep approach where first static analysis is applied to the
based methods. shapshots of the social network at different time stepstlagal
Degree-based methods evaluate the local community qualitynmunity evolutions are introduced afterwards to intetpr
by investigating nodesdegrees. Some naive solutions, suich change of communities over time. As they overlooked
as [-shell search algorithm [21], discovery-then-examimatidhe old community structures as obtained in the previous
approach [15], and outwardness-based method [16], only camapshot, this strategy of re-calculating is not efficiémthe
sider the number of edges inside and outside a local coframework of multiagent system, Yang et al. [20] introduced
munity. Clauset [22] defines local modularity by considgrinan incremental AOC-based method (AOC-i), in which the
the boundary points of a sub-graph, and proposes a greedy community structure can be quickly derived based on
algorithm on optimizing this measure. Similarly, Luo et[dlZ] the incremental change and the old community structure as
present another measurement as the ratio of the internedelegbtained in the previous cycle. The proposed incremental
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computing method in our work is also AOC-based. ComparedRemark. The identifier of nodey;, e.g.,7, is also used to

with AOC-i, AOCCM-i does not require any user-definedienote the address of the location, in which the node sguate
parameters, and the network updating can be more arbjtrarAfter knowing the identifier ofv;, A; can send messages to
e.g., gradually inputting any number of new edges. We will. In the AOC system, the message pool on each néi¢ (
also prove in the experiment that the average convergeatispstores the messages from others agents, and the data pool

of AOCCM-i is much faster than AOC-i’s. T, stores the structural similarity between nodeand its
adjacent nodes. Initially, bot®, and Y, are empty. Without
I1l. PROBLEM DEFINITION AND PRELIMINARIES loss of generality, let's consider ageAt. Before conducting

égcal community miningA; sends messages to the neighbors
of nodev; (©;.,er, < Ai.message); then A; , cr, return
jv;er; to calculate the structural similarities betwegrand

As the nodes and the connectivity information in a di
tributed network are located at different positions. Comityu
mining in the distributed network is aimed to find all thg . ) L
underlying communities only based on the local views and the ne|glhbors; finally,A; stores all the structure similarity
cooperations among the nodes. One possible solution te sof lues in the data pool of node (T; « {sij[v; € I'i}).
this problem is to provide the clear picture of the networkro Therefore, the structural similarity of each pair of nodes i
administrative agent, on which a GCD algorithm is applied l’%‘oc system is calculated only once.
discover the underlying communities. However, this stpate
will have several inherent limitations when confrontinggle=  B. Objective of AOC system

scale or highly-dynamic networks. To address this isstes, t The objective of the AOC system can be achieved if the all

methodology of AOC is presented in this paper, which i . . . SO
derived from [18], [19]. Generally speaking, an AOC Syster%gents autonomously achieve their respective objectives:

can be viewed a multiagent system (MAS), in which agents C={Cy,---,C,}, (1)

interact with each other according to some pre-definedfﬂmnsWh e C. is the stable local community of ot and
protocols to detect the local community. erel; Is the stable local communily of agent;, a

Ui<i<nC; = V. The objective of agen#; is to find a local
community structure starting from its appurtenant nage
A. Environment of AOC system only based on its local view (e.dZ;(£)UB;(t)) and interactions
The presented AOC system is defined as a distributadth other agents.
network in which nodes and the connectivity information are Generally, a community is measured by a specific property
decentralized, as shown in Fig. 1. L&t= (V, E) be a given of the nodes within it. For this task, different community
weighted distributed network, wher€ is the set of nodes measurements have been proposed [13], [16], [17], [22] in
(lV] =n), E is the set of edgesH{ = {e;;}) that connect the recent years. In this paper, we adopt a structural simjlarit
nodes inV, andw;; is the weight on edge;;. In the AOC measure from the cosine similarity function [23] to effeety
system, each node is defined as a tupld’;, ©;,Y;,l; >, denotes the local connectivity density of any two adjacent
where the components denote the identifiers of its adjacendes in a distributed network. Here, we first formalize some
neighbors I;), the message pool on the node;), the data notions of the local community.
pool on the nodeX;), and the community label of the node Definition 1 (Structural Similarity):Given a distributed
(I;) respectively. For each nodg of the distributed network, network G = (V| E), the structural similarity between two
there is one autonomous agedy residing on it, which adjacent nodes; andv; is defined as :
is characterized by three characteristics, includaigock, D S~
conmuni ty, andboundary, denoted as< t,C;(t), Bi(t) >. Sij = ’”kerﬂéﬁrﬁ' v ~.
The attributet denotes the clock maintained by ageht who kaen Wik ka.erj Wi

will adjust its clock byt «— t+1 after each iteration. When its\nhen we consider an unweighted network, the weight

clock reaches the final tim@_, A; will become inactingi(t) of any edge can be set to 1 and the equation above can be
denotes the local community detected by agéptat timet.  ansformed to

Initially, each agent only includes its appurtenant nodéhim . T, N T
community, e.g.C;(0) = {v;}. Then, it starts to enlarge its AT

Ioca_tl community _ba_lsed on the mformatlon_ I ga_thers from I1if/hich corresponds to the edge-clustering coefficient intro
environment, until its clock reaches the final tirfieor the duced in [13]

community cannot be changed any more. In other words, WeDefinition 2 (Internal Similarity and External Similarity)

gggsc(:?;te:d ﬁi(tjr;)i.ts-rlr:)igloggrg?nru%ig/ f \?vi(i:ct]hac%enn:):es dcelzigg gg employing the structural similarity, we introduce imaf
’ d external similarities of the communify(¢) as follows:
Bz(t) = {’Uj|’l)j g Ci(t),’l)k S Ci(t),< Vj, Vg, Wik >€ E} At Ey( )

)

®3)

the beginning3;(0) is set to be the adjacent neighbaks)(of Sin(Ci(t)) = Z Siks (4)
nodew;. During the community updating of agedt, nodes 05,0k E€C (1), <03 vk sy >EE

belonging to its community will be added from the boundary _ B _

one by one. In contrast, those nodes not belonging to the Sout (Ci(t)) = Z Siks ®)

: . . 0; €Ci (1), vp ECE (L), <0, ,vp w0 >EE
community will be gradually excluded out of its boundary. 03 €Ci(1), 0k €CF (1), <vj vk > €

The above mentioned notations are summarized in Table IwhereC{(¢) is the complement of; ().
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vi=<I'i,0i, Yi,li>] Ai=<t,Ci(1), Bi(1)>
T'i—neighbors of vi t—clock time
Ci(t) —community detected by
Ai at clock t
Bi(t) —boundary of Ai at clock t

The structure-oriented view The agent-oriented view
Fig. 1. The environment of the AOC system.

TABLE |
NOTATIONS OF THEAOC SYSTEM.
Symbol Description
r; the identifiers of adjacent neighbors of
O; the message pool on, which stores the messages from others agents
T, the data pool on;, which the structural similarity betwean and its adjacent nodes
l; the community label ob;
t the clock maintained by agent;
Ci(t) the local community detected by age#yf at time+
B;(t) the boundary area of agedt at timet

The criterion agentd; uses to find the local communitying corollary.
containing the appurtenant nodgis derived from [32], which ~ Corollary 1: The local modularity value of the community
finds a community with a large number of edges within itself; (¢) will increase wher¢;(¢) has high internal similarity and
and a small number of edges to the rest of the network. low external similarity.

Definition 3 (Local Modularity):The local modularity of  ProoRA high value ofS;,, (C;(t)) reveals a large number of
the communityC;(¢), denoted a$l’(C;(t)), is given as follows: common neighbors of any adjacent node pai;ift), resulting

, , in a high value of intra-cluster density. While, a low value o
1(Ci(1)) O(Ci(t)) -

W(Ci(t)) = COE - GmIcd] (6)  S,.:(Ci(t)) reveals a small number of common neighbors of

! ! g any adjacent node pair betweé€n(t) and C(t), resulting in
where I(Ci(t)) = >, .ecirdiin OC(t)) = alow value of intra-cluster density. O
Doveci () ece ) A A = [Aij] is ann x n adjacency | Definition 2, as the second term will be made negligible
matrix of the distributed networ. by the large|Cs(¢)], a very small community can give a high
Based on the definition of local modularity, we have thgalue of W (C;(t)). We further make an adjustment in the spirit
following theorem. of the ratio cut and maximize the following criterion:
Theorem 1:The local modularity value of the community

C;(t) will increase wherC;(t) has high intra-cluster density , )
and low inter-cluster density. W(Ci(t)) = |Ci(t)||cf(t)|(1(cz(t)) 0(C:(1) ), (7)

. 2 . c
ProORThe termI(C;(t)) is twice the number of the edges 1C:(0) C:OlICE @)l
within C;(t), and O(C;(t)) represents the number of edgewhere the factotC;(¢)||C (¢)| penalizes very small and very
betweenC;(t) and the rest of the network. Each term idarge communities and produces more balanced solutions.
normalized by the total number of possible edges in eachSuppose at clock, A; explores the adjacent nodes in the
case. Note that we normalize the first term |By(¢)|? rather boundary areaB;(t), as shown in Fig. 2. It distinguishes
than |C;(t)|(|C;(t)| — 1) in order to conveniently derive thethree types of links: those internal to the commuudiff#)(L),
modularity gain discussed below, but in practice this makéetweerC;(t) and the node;(L;,), betweerC;(t) and others
little difference. Subject to this small difference, thecab nodes inB;(t)(L,.:). To simplify the calculations, we express
modularity can be described as the intra-cluster densibumi the number of external links in terms &f and k;(the degree
the inter-cluster density. Thus the proof completes. O of nodev;), SO Ly, = a1l = agkj, Lowr = b1 L, with
Based on Definition 2 and Theorem 1, we have the follovks > 0, a1 > 7, a2 > z-(since anyv; in B;(t) at least
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to absorb a node iB;(t), e.g.,v;, having highest structural
similarity with nodes inC;(¢) into the local community. If
AWe,(vi) > 0, then the nodev? will be inserted into
C;(t + 1). Otherwise, it will be removed fron8;(t + 1) and
other nodes will be considered in the descending order of
the structural similarity. The two procedures above will be
repeated byA; in turn until its clock reaches the final tinie

or its boundary is empty. Then, the whole commurity is
discovered A; further selects the node with maximum degree
in C; as the core node, the identifier of which can be seen as
the label of detected community. The life-cycle of agent

on nodev; is given in the following.

Fig. 2. TheW variant when a node; joins C;(t).

has one neighbor id;(t)). So, the value of¥ for the current Algorithm 1 The life-cycle of agent; (AOCCM (4i))

community can be written as: L /xInitialization phasex/
2: 1+ 0;
W(Ci(t)) = n— G,y (a1 + b1)L. 8 3 Ci(0) « {vi};
C()] 4: Bi(0) « {vjlv; € Ti};
Then, the variant¥ of the communityC;(t) Uv; becomes > /+Active phasex/
6: while ¢t < T do
) n—|Ci(t) - 1 7 p = AGMATyen, 1) Lusec,r) i
W(Ci(t)Uv;) = WQL(ler)*(MLJrkrazkj). 8 if AWe,((v) > 0 then
© & Bi(tt]) € Bi(t)Ufurlur € Tpe o ¢ Ci(0)} — {0
So we define the modularity gain in the following. 10: Ci(t +1) < Ci(t) U{vj h

Definition 4 (Modularity Gain): The modularity gain for 11:  else .
the communityC;(t) adopting a neighbor node; can be 1% Bi(t +1) = Bi(t) — {vj};
denoted as: 13: end if

. . . 14: t<+t+4+1;

AWe, ) (vj) = W(Ci(t) Uv;) — W(Ci(t)) 15: if By(t) = 0 then
_n—|C(t)] -1 16: break;
G +1 2L+ a1) = (L 4k —azhs) 17 gng if
n—|C;(t 18: end while

- (MM — (a1 +b1)L) 19: / *I nacti ve phasex/
|Ci(t )|

=2n — k;. 10) 21:1; < ar v.eC. ki
OGRS o 9o, ecihi

It means that if a small node in terms of degree links many

nodes in communityg;(¢), adopting it may increase the local o . .
modularity of C;(t). Therefore AWCv(t)(Uj) can be utilized calculate the quantitative metrics for each nodgiand select

as a criterion forA; to determine whether the candidate nodg]e nCode wr?o pro%ucest:]heAg?(r)eéltesttmcremekntt(r)]f the mr:e;nc to
v; should be included in the communiéy(¢ + 1) or not. jon €, €ach agentl; in the System picks the neighoor
node with the largest structure similarity as the candidatge

v and caIcuIateAWci(t) (v7) to determine whether it should
be added int@;(¢+1) or not. The structural similarity reflects

In this section, we propose aAOC-based method for the local connectivity density of the network. The largee th
Community Mining (in short as AOCCM henceforth). First,similarity between a node insidg (t) and a node outside it,
we introduce the basic idea of AOCCM and then presetite more common neighbors the two nodes share, and the more
algorithmic details including the complexity analysisc8ed, probability they are at the same community. So the execution
we introduce how to use AOCCM to detect the global nomf AOCCM on each agent is accelerated and the accuracy
overlapping and overlapping community structures. remains high.

In the AOC system, each agent, e.gl;, starts from Complexity Analysis. The running time of AOCCM on
its appurtenant node, to find the densely connected locakgent A, is mainly consumed in line 7 of Algorithm 1,
community. A; works with two iterative stepdJpdat e step which is selecting the neighbor node with the largest stmact
and Joi n step. First, the appurtenant nodgis added into similarity. AgentA4; can implement it using a binary Fibonacci
the local community, e.gG;(0) = {v;}. In theUpdat e step, heapH, [23], which takes two steps: Bxt r act (extract the
A, refreshes the the boundary arBg(t), and calculate the maximum element frond;). As eachExt r act operation of
structural similarities between nodes in the commudgitit) H; takesO(logn}) time and the body of the while loop is
and their neighbor nodes if;(¢). In theJoi n step, A; tries executedn’ times, the total time for alExt r act steps is

Remark. Unlike existing methods [16], [22], [17], which

IV. AOC-BASED METHOD FOR COMMUNITY MINING
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O(n'logn}), wheren] is the number of nodes inferred (nodeging (in short as AOCCMO henceforth) is given as follows.
in C; UB;). 2) Updat e (for each node in currerns;(¢), A; The running time of AOCCMO is mainly consumed in lines
updates its sum of structure similarities with node&j(¢)). 6-9 of Algorithm 3, which is calculating the membership that
First, the sum of structure similarities with nodes @p(t) nodei belongs toP). The total time of those steps (¥(nk).
for each nodev; € B;(t) should be computed, which canAdding the local community extraction steps, the total time
be completed inO(k;) time, wherek; is the mean degree complexity isO(m*k* + n* logn* + nK) for AOCCMO.
of inferred nodes. For nodes which are nothAR, A; inserts
them into H; in O(1) time; otherwise, it takeg)(1) time Algorithm 3 AOCCMO@G)
to make an Increase-Key operation. As the above steps af€for s — 1: s <= 1n; s+ + do
executedO(m;) times, wherem; is the number of edges in 5. [, 1,] «+ AOCCM(A,); //Parallel Computing
C; U B;. Therefore, the total time of th&jpdat e steps is end for
O(mLk}). Adding all together, the total time complexity is i . _
oEm;kg)Jr n; logn}) for AOCCM on agent4;. f( :IZZS;‘:}E%// L=tilt<k< K}
Non-overlapping Community Detection.Non-overlapping fori=1:i <= n i++ do
community detection aims to find a godd-way partition for k=1:i <= K: k++ do
P = {Pi,---, Pk}, where P, is the k-th community, in S i Ayt 9(05,C))

which I, = I; Yo, v; € Pp, andPy U - UPx C V, Uik = 5 T S G)
PeNPw =0V k # k. K is automatically determined by enznm%rfor

results of eacMOCCM (A;). Our assumption is that similar 1
adjacent agents will return analogous community strusture

in which the core nodes are almost unanimous. Therefore)n the following example, we show how to detect commu-

if A; detects the the same community label, their apputities hidden in the distributed network (see Fig. 3) usimg t
tenant nodes are likely to be in the same community. THECCM algorithm. The original distributed network incluge
process of AOCCM expansion algorithm for non-overlappint2 nodes and 20 edges, the weight on the edges between nodes
(in short as AOCCMNnO henceforth) is given as followsyi, vs andwg is 3, and 1 on other edges. We will focus on a
where L = {l;|i = 1,---,n} is the label list of nodes in single agent and observe its local community at differeneti

the distributed network. AOCCMnO could be completed iftep during its entire life-cycle. In this case, we choosenag
O(m*k* + n*logn*) time, wheren*, m* are the number of A1, and the final timel" is set to be 12.

nodes and edges in the largéstu B;, and k* is the mean  First, A; initializes itself. The time of its clock is set to 0,

degree of inferred nodes in it. and its local community and boundary area at time O are set
to C; (0) = {1)1}, B (0) = {’02,’03, Vs, ’Ug} reSpeCtively.
Algorithm 2 AOCCMnO(@) Then, A, starts its active phase. After calculating the struc-
1fori=1i<=n;i++ do ture similarities in Step 7, it selects nodefrom 5, (0), which
2 [Cy,1;] + AOCCM(A,); /IParallel Computing has the highest structural similarity with the nodeg'if0). In
3: end for Step 8,AW¢, () (vs) is calculated to determine whether node
4 L =unique(L); Il L={l}]1 <k < K} vs should be added int6;(1) or not. ASAWCl(O)(’l}g,) > 0,
5: K = Length(L); node vs is added intoC; (1), and B;(1) is refreshed to be
6: for k=1, k<=K; k++ do {ve,vs,v6,v7,v8,v9}. Next, in Step 14 A, updates its clock,
7 Pe={uwlVL =1} the time of its clock is 1. In Step 154; checks whether
8: end for it has reached a convergent status by observing its boundary

area. AsB;(1) is not empty and the current time is less than

Overlapping Community Detection. While, for an over- 7’ A; goes to Step 7 and starts a new iteration. After finishing
lapping partition, overlapping communities can be repmees the second iteration, the local communlty and boundary area
as a membership matritl = [u; 4], i = 1,---,n, k = Of A1 and time 2 become<’;(2) = {v1,v5,v0}, B1(2) =

K, where0 < u;; < 1 denotes the ratio of mem- {V2,vs. 6, U7, vs, U10, V11, 12} respectively. AsB (2) is not
bershlp that nodes; belongs toP,. If node i belongs to €Mpty and the current time is still less th&nA, goes to Step
onIy one communityu; = 1, and it clearly follows that 7 and starts the third iteration, after which the local comityu
Zk:luhk — 1 for all 1 i < n. With the detected Of 41 attime 3 keeps unchanged while its boundary #&@)

<
communities of AOCCM (A;), u; ) can be calculated asis shrank to be{vs, ve, v7, vs, v10, v11,v12}. Once againA;

follows: has not reached its convergent status and continues thgvieer
process until its clock time reaches 10. In this case, the
D , 5(vi,C;) boundary areaB3;(10) is empty, so it quits the cycle of
Uiy = nAL=l Y T (11) community updating.
' 21, 0(vi, C5) Finally, 4; records its convergent local community@s =
1 if v eC; C1(10) = {w1,v5,v9}, and further selects the identifier of the
6(vi, Cj) = 0 otherwisé . (12) node with maximum degree (e.@s;) as the label of detected

community. The entire life-cycle of agedt, is completed and
The process of AOCCM expansion algorithm for overlapd; becomes inactive.
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A C Ii b2 | Ps
A [1:5:9] b 1 0
A [2:3;4] 2 0] 0
As [3:2:4] 2 0|0
A+ [4:2:3] 2 010
: . As [5;1;9] 5 1|0
POROC LT 6781 |8 10
Ar [7:6:8:5] 5 1|0
As [8:6:7:5] g 1 0
As [9:1;5] 5 0.5 0.5
A | [10;11;12;9] | 9 0 1
Aun| [11;10512;9] |9 0 1
Az | [12;10;11;9] [ 9 [
Fig. 3. An illustrative example for AOCCM, AOCCMnO and AOC@M
TABLE || -
REAL-WORLD NETWORKS FOR EXPERIMENTS ' A
Network V] |E| k =
Kar at e 34 78 459 © 10°} C
NCAA 115 616 10.71 E O }
Facebook | 4,039 88,234 43.69 o
PGP 10,680 24,340 4.56 c 1% O -
& LTE
LMP
Similarly, we can observe the activities of other agents. " - JAOCCM
When we acquire the attributive tags of all 12 nodes, the "Rarate NCAA Facebook PGP

global non-overlapping community structure has been tletegig. 4. Comparison on Efficiency.
ed. Finally, all local communities are further assembledda
membership matriU = [u; 5], which promulgates the global

overlapping community structure. ground truth community including the nodg, we can com-

pare T; and C; in the framework of Precision, Recall and
V. EVALUATION OF THE AOC SYSTEM F-measure (PRF) to assess our results. A higher value of
Four real-world undirected networkskar at e, NCAA, precision {) indicates fewer wrong classifications, while a
Facebook and PGP are used to validate the AOC systemhigher value of recall R) indicates less false negatives. It is
Although these networks are given as centralized represepmmon to use the harmonic mean of both measurements,
tations, for the purpose of testing our distributed methodalled F-measure, which weighs precision and recall eguall
here we treat them as distributed networks, i.e., we consideportant. They are calculated as follows:
that their nodes and links are distributed (e.g., over thffie

sources, or geographical locations). Some charactexristic IC; N'T,|
_ K2 ?

these networks are shown in Table Il, whefé| and |E] P(v;) = ————, (13)
indicate the numbers of nodes and edges respectively in the ICil
network, ands indicates the average degré@r at e is a well R(v;) = w, (14)
known social network that describes the friendship refetio ||
between members of a karate cINCAA is a representation of Fl(v;) = 2P (vi) R(vi) (15)

the schedule of American Division | college football games.
Vertices in the network represent teams, which are divided .
into eleven communities(or conferences) and five indepmderS'zcéet:Bﬁ]Iavigt\;vo r|1et'\:/vtj) (r:kf??::? doeoniifanc?oFr)nGr':)uz‘ie:Yeesr\]/\cl)i th

teams. Edges represent regular season games between?htgg lobal 'Er ot r?ap'?w/format'on of the gt o networks. and
two teams they conneckacebook has been anonymizedu iIiz?e its destegtioun relsults as Ithe rounjtrum fortr\:\é,@]?ﬁ:

by replacing the Facebook-internal ids for each user with é g

new value. Each edge tells whether two users have the sah LCD. methods. Th_|s_ is based on the Intuition thatan LCD
method is acceptable if it can achieve an approximate rasult

political affiliations.PGP is a large scale social network, where

each node represents a peer and each tie points out that %CD approach does, because LCD ”.“?th"d? usually perform
aster than GCD approaches. In addition, since the global

peer trusts the other. . . . .
community quality metrics such as the well-known Modularit
metric [5] are not suitable to evaluate the quality of the

A. Performance of AOCCM detected local community, we use each node in a community

The EffectivenessTo test the effectiveness of our approachas a seed and report algorithms’ average precision, regdll a
the results of AOCCM are compared with the ground truthl-measure on this community. We compare AOCCM with
communities of each network. To be special, Tet be the classical degree-based LCD algorithms LWP [17], ELC [16],

P(v;) + R(v;)
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TABLE Il
ACCURACY COMPARISON ON REAEWORLD NETWORKS

Community Comm.— AOCCM LWP ELC LTE

size| P R|FL| P R[FL| P RJ|FL|P]R]JFH
Kar at e-A 16 [ 1.00] 058] 0.73] 0.94] 0.49] 0.64] 0.93] 0.49] 0.64 1.00] 0.49] 0.66
Kar at e-B 18 | 0.97|0.47| 063|097 0.44| 0.61| 0.89 | 0.48| 0.63| 1.00| 0.57 | 0.73
NCAA-AC 9 [1.00] 1.00] 1.00] 0.70] 0.48] 0.57] 0.68] 0.56| 0.61] 1.00| 1.00 | 1.00
NCAA-BE 8 | 1.00| 1.00| 1.00| 0.48| 0.47| 0.48| 0.51| 0.67 | 0.58 | 0.80 | 1.00 | 0.89
NCAA-Ten 11 |1.00| 1.00| 1.00| 0.33| 0.26 | 0.29| 0.17 | 0.21| 0.19 | 1.00 | 1.00 | 1.00
NCAA-SE 12 | 1.00| 1.00| 1.00| 0.81 | 0.55| 0.65| 0.83 | 0.85| 0.84 | 1.00 | 1.00 | 1.00
NCAA-PT 10 | 0.91|0.82|0.86| 0.68| 0.58| 0.62| 0.68 | 0.73| 0.70 | 0.91| 0.82 | 0.86
NCAA-Others 5 [0.12]024|0.16|0.21|0.40| 0.27| 0.14| 0.52| 0.22| 0.19| 0.32 | 0.24
NCAA-MA 13 | 1.00| 0.50| 0.67 | 0.78| 0.48 | 0.60 | 0.81 | 0.78| 0.79 | 0.86 | 0.50 | 0.64
NCAA-MV 8 | 1.00| 1.00| 1.00| 0.76| 0.70| 0.73| 0.67 | 0.70| 0.69 | 1.00 | 1.00 | 1.00
NCAA-WA 10 | 1.00| 1.00| 1.00| 0.65| 0.45| 0.53| 0.67 | 0.60 | 0.63 | 1.00 | 1.00 | 1.00
NCAA-Twelve 12 | 1.00| 1.00| 1.00| 0.67 | 0.40 | 0.52 | 0.61 | 0.56 | 0.35 | 1.00 | 1.00 | 1.00
NCAA-SB 7 | 064|051 057|049| 0.61| 0.54| 0.23| 0.69| 0.35| 0.64 | 0.51 | 0.56
NCAA-USA 10 | 0.74| 0.66| 0.70| 0.41| 0.32| 0.36| 0.25| 0.23| 0.24 | 0.74 | 0.66 | 0.70
Facebook-1 341 [ 1.00] 0.16] 0.28] 0.99] 0.05] 0.10] 0.88] 0.40| 0.55] 1.00 0.15 0.26
Facebook-2 66 | 0.88| 0.48| 0.61| 0.42| 0.14| 0.21| 0.16| 0.96 | 0.27 | 0.94 | 0.57 | 0.71
Facebook-3 308 | 0.94| 0.26| 0.41| 0.92| 0.07| 0.13| 0.41| 0.15| 0.22 | 0.97 | 0.18 | 0.30
Facebook-4 25 | 0.96| 1.00| 0.98| 1.00| 0.36| 0.53| 0.97 | 0.59 | 0.74 | 1.00 | 1.00 | 1.00
Facebook-5 206 | 1.00| 0.33| 0.50| 1.00| 0.09| 0.17| 0.97 | 0.31 | 0.47 | 1.00 | 0.33 | 0.49
Facebook-6 62 | 0.94| 0.42| 0.58| 0.90| 0.19| 0.31| 0.56| 0.32 | 0.41 | 0.99 | 0.44 | 0.61
Facebook-7 408 | 0.94| 0.58 | 0.71| 0.38| 0.04| 0.07| 0.21| 0.17| 0.18| 0.96 | 0.60 | 0.74
Facebook-8 483 | 0.94| 0.19| 0.31| 0.81| 0.05| 0.09| 0.16| 0.13| 0.14 | 0.97 | 0.16 | 0.27
Facebook-9 442 | 0.98| 0.30| 0.45| 0.97| 0.07| 0.14| 0.97 | 0.20| 0.33| 1.00 | 0.24 | 0.38
Facebook-10 73 | 0.94| 0.92| 0.93| 0.53| 0.19| 0.28| 0.06 | 0.12 | 0.08 | 1.00 | 1.00 | 1.00
Facebook-11 237 | 0.99| 0.87| 0.92| 0.26| 0.07| 0.10| 0.15| 0.03 | 0.04 | 1.00 | 0.82 | 0.90
Facebook-12 226 | 0.98| 0.68| 0.80| 0.96| 0.13| 0.23| 0.10| 0.21 | 0.14 | 0.99 | 0.46 | 0.63
Facebook-13 554 | 0.98| 0.18| 0.31| 0.96| 0.06 | 0.10| 0.63| 0.37 | 0.46 | 0.99 | 0.18 | 0.21
Facebook-14 548 | 1.00| 0.11| 0.20| 0.99| 0.03| 0.07 | 0.98| 0.24 | 0.39 | 1.00 | 0.08 | 0.12
Facebook-15 60 | 1.00| 0.33| 0.50| 0.98| 0.13] 0.23| 0.99 | 0.33| 0.50 | 0.98 | 0.14 | 0.24
PGP-1 395 [ 0.95] 0.16] 0.28] 0.86 0.16| 0.27] 0.82] 0.12| 0.21] 0.96] 0.12] 0.21
PGP-2 303 | 0.93| 0.22| 0.36| 0.92| 0.22| 0.36| 0.73| 0.19| 0.30 | 0.93 | 0.19 | 0.32
PGP-3 974 | 0.94| 0.13| 0.24| 0.74| 0.13| 0.22| 0.84| 0.17 | 0.29 | 0.94 | 0.18 | 0.31
PGP-4 379 | 0.99 | 0.12| 0.21| 0.78| 0.12| 0.20| 0.90| 0.17 | 0.29| 0.99| 0.13 | 0.21
PGP-5 1457 0.93| 0.11 | 0.20 | 0.88 | 0.11| 0.20| 0.76 | 0.08| 0.15| 0.93| 0.09 | 0.17
PGP-6 798 | 0.98| 0.06| 0.11| 0.94| 0.06| 0.11| 1.00| 0.08 | 0.16 | 0.98 | 0.08 | 0.15
PGP-7 1289 0.96 | 0.14 | 0.24 | 0.80 | 0.14 | 0.23| 0.76 | 0.13| 0.22| 0.96 | 0.17 | 0.29
PGP-8 513 | 0.97| 0.17| 0.29| 0.87| 0.17| 0.28| 0.87 | 0.11| 0.20 | 0.97 | 0.11 | 0.20
PGP-9 417 | 093] 0.17| 0.28| 0.93| 0.17| 0.28| 0.92| 0.27 | 0.41| 0.92 | 0.13 | 0.22
PGP-10 1091 0.93| 0.22 | 0.36 | 0.86| 0.22| 0.35| 0.83| 0.19| 0.31| 0.93| 0.31| 0.47

and a similarity-based algorithm LTE [23]. The comparisoproven by extensive experiments to be one of the most aecurat
results are presented in Table Ill. Note that FUC totallyedet algorithms among previous LCD methods in[23].

terms of size are selected to compare the accuracy. In Tdble \occMm, LMR, ELC and LTE, Fig. 4 shows the average
we can observe that: 1)the recall values for all methods &{ghning time of LCD methods starting from each node in
overall worse than precision values, this is because LGRe four test graphs. Apparently, the execution of AOCCM
methods are based on the greedy search, which will tregdmore accelerated. Both AOCCM and LTE are similarity-
to find a local optimal solution; 2)AOCCM almost achievegased algorithms, their difference lies at the definition of
the high precision for all datasets, which demonstrate thg.al modularity. Compared with AOCCM, the calculation of
superiority of its local search model over the other methodgodularity gain in LTE is more complex, which will consume
3)AOCCM usually outperforms LMR and ELC, and have gxtra time. LMR and ELC are degree-based LCD algorithms,
slight advantage over LTE, even though the later has begRich need calculate the quantitative metrics for each node
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(c) NCAA: ground truth (d) NCAA: AOCCMNO results

Fig. 5. AOCCMnO on small social networks.

in B. The metric calculations are somewhat duplicate, whiéh Fig. 5(b). This implies that there exits a latent sub-part
can not be simplified. Especially, the stopping criteria fdincluding nodes 6, 7, 11) inside the party led by node 1, and
ELC is to jude whether the current community is a “p-strong latent sub-party (including nodes 25, 26, 32) inside thtypa
community”, which will cost more time in every search steded by node 34.

The ground truth ofNCAA labels nodes with their actual
B. Performance of AOCCMnO conferences, corresponding twelve different colors/ekap
Here, we first apply AOCCMnO to the two small social netFig. 5(c). As shown in Fig. 5(d), AOCCMnO generally well
works with ground truthKar at e andNCAA. The purpose is captures the “sharp-cut” teams in conferences “AC”, “BE”,
to gain a direct understanding of non-overlapping comnyunitTen”, “SE”, “MV”, “WA”, and “Twelve” respectively, al-
detection by network visualization. Then, we further comgpathough there yet exists some teams assigned mistakenlg. Not
AOCCMNO with classical GCD methods, such as FNM [5fhat nearly all the "Orangered rectangle” in Fig. 5(c) atelty
FUC [7], METIS [33], and Cluto [34]. detected mistakenly by AOCCMnO. This is indeed reasonable
Kar at e is split into two parties following a disagreemensince those nodes have very few internal connections, lactua
between an instructor (node 1) and an administrator (nothey represent five independent teams (Utah State, Navye Not
34), which serves as the ground truth about the commidame, Connecticut and Central Florida) in NCAA.
nities in Fig. 5(a). We employ AOCCMnO to extract non-
overlapping communities from the network. The result is Modularity and Running Time Comparison. The global
shown in Fig. 5(b), which supplements the division of thebclunon-overlapping community structure can be evaluated by
with more information. More interestingly, AOCCMnO actusome predefined quantitative criterions, in which, the mod-
ally tends to partition this network into four rather thanotw ularity of Newman and Girvan [5] is one of most popular
communities, as indicated by the nodes in four colors/shapgiality functions. Modularity can then be written as follow
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TABLE IV
MODULARITY AND RUNNING TIME COMPARISON BY AOCCMNO, FNM [5], FUC [7], METIS [33],AND CLUTO [34].

Network AOCCMNnO FNM FUC METIS Cluto

Kar at e 0.38/0.03s 0.38/0.05s 0.420.03s 0.243.01s  0.36/0.02s
NCAA 0.58/0.20s 0.57/0.20s 0.600.06s 0.08).01s 0.60/0.03s
Facebook | 0.73/2.68s 0.78/8.45m 0.846.29s 0.799.53s 0.82/4.24s
PGP 0.670.44s 0.85/179.42m 0.8822.50s 0.83/1.76s 0.72/11.90s

(\f\f\f\f\f\f\f\f\f)
PoTOUT O U O UOUUN

as:
W ° L 0y @O0 66.0.00 Cr(e) = {viluix > a}. (17)
E o AAAANADAAL E %‘_g 0Nee 7! ’
oo 8-8-8gB88an g F \ammme Th_erefore, we can use each node in a overlapping com-
<, ©-Avg. Precision ZLons ©rAvg. Precision munity as a seed and report AOCCMO's average precision,
' Mo onasure Mo oaasure recall and F1-measure. The precisiBi)), recall(z(«)) and
®Toz  0a 08 o8 1 “"oz oa 06 o8 1 F1-measure{1(«)) of the detectedv-overlapping community
¢ ¢ structure are defined as follows:
(a) Karate (b) NCAA
( A A C U \JO A~
085 od 08 Zk*l KZ u(a) |Ck;(0()r‘|']ri|
o 08:2;&2;232_ AL Eoo AAAAA P(a) = L (18)
D'_ o -E_E-E-E-E_E-BETJ D' O'ATA-AAA»EI"EFE-E—E] Zk:l,m K qu,ECk () 1
oy 07 o Mm-g-aE8E ¢
é 065 ©-Avg. Precision 2 0.53 8-8 £5-Avg. Precision R Zk—l K Z & [Ci()ATs|
06 Avg. Recall 0 Avg. Recall R(a) — =1,y v € k(@) \Tq,\ (19)
Avg. F1-measure Avg. F1-measure Z Z . 1 ’
05552 0.4 0.6 0.8 1 02753 0.4 0.6 0.8 1 k=1, K v; €Cy ()
o a ; 2P(a)R(e)
d Flla) = ———————. (20)
(c) Facebook (d) PGP ( P(a) n R(a)

Fig. 6. The accuracy for different on the four test networks. Fig. 6 shows the accuracy in the function af for the
four test graphs, from which we can observe that: 1)the ecal
values for AOCCMO have a significant improvement in all

1 kik; scales, compared with previous AOCCM algorithms; 2) the
Q= om Z( T om x(li 1), (16)  values ofa in the range[0.6,0.8] are optimal, in the sense
t that overlapping communities extracted by AOCCMO in this
where they-function yields one if nodes; andv; are in the region have a high F1-measure; 3)AOCCMO performs better
same communityl{ = [;), zero otherwise. in dense networks rather than in sparse networks.

In order to verity the effectiveness of AOCCMnO, we
compare it with classical GCD methods, such as FNM [5],
FUC [7], METIS [33], and Cluto [34]. For each method/net-
work, Table IV displays the modularity that is achieved and
the running time. The modularity obtained by AOCCMnO In real world, an AOC system could be updated period-
are slightly lower than FUC’s, but it outperforms nearly alically depending on new local updates. We can (se=

VI. INCREMENTAL AOC-BASED METHOD FOR MINING
DYNAMIC NETWORKS

the other methods. In terms of running time, METIS hagG! G2, --- ,G"} to denote a collection of snapshot graphs
a great advantage due to its powerful parallel processifig a given dynamic network oveF discrete time steps. Let
modules. However, it perform poor on graphs with obscu@ = {C},--- ,C!,} be the archived objective of the AOC

community structure, e.gkar at e and NCAA. AOCCMnO, system at timd, wheren! is the total number of agents. The
on the contrary, keeps a nice balance between high modulagitoblem of incremental community detection can be simlifie
and short running time. to accurately and efficiently compu@*' when the network
is updated fronG! to G!*1.

One immediate approach to solve the above problem is to
C. Performance of AOCCMO directly apply the AOCCM algorithm on each agent in the

To evaluate the performance of AOCCMO, we also emplaypdated network as discussed in Section IV. Obviously, the
the PRF framework. LeC;, be the k-th overlapping com- strategy of re-calculating is not efficient as it overlodks bld
munity, which obeysC; U--- U Cx C V. In the following, community structure in the previous snapshot. To addréss th
we introduce a membership threshald 0 < o < 1, to issues, we try to find an incremental functipri, which can
control the scale at which we want to observe the overlappifigure out the new community structure based on the previous
communities in a network. archived objective and the incremental update:

Definition 5 @-Overlapping Community)The k-th «-
overlapping community, denoted by i(a), is defined C' = r*(C'71, AGY, (21)
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(a) The I-I-th evolutionary cycle (b) Network updating (¢) The /-th evolutionary cycle

where AG! = (AVL AE") = G' — G!'~! denotes the
incremental update of the netwotk at time /.

A. Incremental AOC-based method

In the incremental AOC-based method (in short as AOCCM-
i henceforth), the network to be mined is dynamically chang-| ¢sz=tsvavvs)
ing, that will trigger the agents to detect the new community| Z,“?="
structure. We can understand the AOCCM-i algorithm as an , _ _
iterative process consisting of a series of discrete eigofaty 19 7+ An illustrative example for AOCCM:-i
cycles. In thel-th evolutionary cycle, the new objective of
agentA; can be quickly derived based on its previous local
community (Cﬁfl) and the incremental update of the networg
(AGY). The life-cycle of agent; in thel-th evolutionary cycle 9
is given in Algorithm 4:

C[K(T) ={v8,v6,v7,v5,v1,v9}
B's(T)= @
/'s=5

C“X(O)z {v8,v6,v7,v5}
B's(0)={vi1,vo}

Fig.7 shows an example of AOCCM-i, which focuses on
entAg from its |-1-th evolutionary cycle to theth one. In
the previous evolutionary cyclels detects a local community
including nodes{vs, vg, v7,v5}; then the network is updated
by adding into three new edg€s;s, e19, €59 }. Ag monitors
the changes, and initializes its local community and bounda

Algorithm 4 The life-cycle ofA; in the(-th evolutionary cycle

1 /+Initialization phasex/ area to beCi(0) = {uvs,vs,vr,vs}, BL(0) = {v1,ve}

20t f 0; I respectively. Next,Ag starts its active phase and continues

3 Cil(o) <G 1 1 the iterative searching process until its clock time reache

4: Bi((g) — {yjlo; & C7 7o € G, < i, vk wik >E 7 oor it has reached its convergent status. Finally, the local
_AEI}? community detected bylg at thel-th evolutionary cycle is

5: if B;(0) = 0 then {vs, ve,v7,v5,v1,v9}. In Fig.8, we further show how to use

6:  go to Step 22; AOCCM-i to mine the dynamidNCAA. In each update of

7 end if - NCAA, 100 new edges are added. The entire process contains

8 /*Active phasex/ six evolutionary circles. Figs.8(a)-8(f) present the says

9: while ¢ <T" do of NCAA after each evolutionary cycle, respectively. The final

10: wf = Argmaz,, epi(s) X, ect(s) Sis; NCAA from the entire process is shown in Fig.8(f), from which

11 if AWCI;(,E)(U;‘) > 0 then we can see that the detected community structure is almest th

12: Bl(t+1) « Bl(t)U{vk|vx € Tj=, vy & CL(t)}—{v}}; same as that found by the AOCCMnO.

13: Ci(t+1) < Ci(t) U{v}};

14:  else B. Performance analysis of the AOCCM-i method

1> Bi(t+1) « Bi(t) - {vik We first take the similar method as in [20] to analyze

i? ?T ;f+ 1 the computational complexity of AOCCM-i. The time steps

18: it BL(t) 7’(2) then required by A; to finish local community mining in the-

19: b;eak'i th evolutionary cycle is defined ag. Without considering

20: end if ’ the parallel computing, the total time steps required by all

21: end while agents in thel-th evolutionary cycle can be calculated as
' I _ n l

22: [ *I nactive phasex*/ T =2 i _ o

23 CL = C;(1); Thus, we can approximately evaluate the efficiency of the

AOCCM-i method using’. Smaller value of- indicates that
less time is required in théth evolutionary cycle. In the
experiments, for each network, we use three differentesiias
Remark. In Algorithm 4, the initial local community of to mine its community structure. The first one is based on
agentA; is set to be(Cﬁ‘l, which is the obtained objective the re-calculating strategy, that is, directly applying @CM-
in the previous cycle. In the AOC system, once the networlO on the updated network for non-overlapping community
is updated, agentd; can quickly monitor the changes indetection. The second one is based on Eq.21, in which, the
its local environment by the cooperation among agents. Héw community structure will be detected by AOCCM-i based
the incremental update\G!, happens to agem;, we have on the previous objective and the incremental update of the
BL(0) # 0, which will be initialized as{v;|v; ¢ C:"' v, € network. The last one is AOC-i proposed by Yang et al. [20].
(Cﬁ‘l, < vj, vk, wjp >€ AE'}. Otherwise,B.(0) = (), agent Note that all networks used here are considered as dynamic
A; will directly turn to the inactive phase. Except for theones, which grow gradually by adding a fixed numbg} (
initialization phase, the life-cycle of agent; in AOCCM- of edges in each evolutionary cycle. As shown in Fig. 9,
i is almost the same as that in the AOCCM algorithm, a8OCCM:-i outperforms AOC-i, and the value of AOCCM-
shown in Algorithm 1. Like AOCCM, AOCCM-i can be alsoi is smaller than AOCCM'’s by nearly two magnitude. Our
expanded to detect the global non-overlapping and overigppmethod works efficiently and requires much less time to deal
community structures of the dynamic distributed networks. with the new network after each update.

24: I} < argmaz,, cc1 kj;
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In each evolutionary cycle of AOCCM-i, a fixed numbed ( quickly reach the convergent status. One possible solusion
of edges are added into the network, which can be seen asttheelax the selection criteria, e.g., redefine the moduylari
updating speed of a dynamic network. Fig. 10 further presemfain asAWe, 1 (v;) = W(Ci(t) Uv;)/W(Ci(t)), and then
the relationship between the averagealue and the updating use a threshold to control the candidate node selection. We
speedy, from which, we can see that Avg: grows with will investigate this in our further work.
the increase ofi. This implies that if the average convergent

speed of agents could be matched with the updating speed of VII. CONCLUSION
the dynamic network, AOCCM-i will perform well without  Rea| life networks are distributed and composed of a set
any delay; otherwise, it may result in some delay. of social actors and their interaction relations. Multiagge

We finally compare AOCCM-i and AOC-i on the effec-technologies have already achieved significant succesasin p
tiveness. For each algorithm/network, Figs.11(a)-11{ghldy years, especially for modeling and analyzing autonomods an
the modularity that is achieved in each evolutionary cycldistributed multi-entity systems. The questions thenead$
As shown in Fig.11, the) values of AOCCM-i are larger how to connect real life networks and multiagent systems and
than AOC-i's on the first three networks, while AOCCM-how to use multiagent technologies to model and analyze the
i is slightly inferior to AOC-i on PGP. This might due to community structures of real life networks. This paperratie
the strict definition of the modularity gain, which decides to answer this problem by surveying real life networks from
whether the candidate node should be added into the loaamultiagent perspective.
community. AsPGP is a large sparse network compared with In this paper, we have proposed an AOC-based method
other networks, the local search model by AOCCM-i mighHbr community mining (AOCCM), in which, each actor in
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the distributed networks is associated with an agent who
spontaneously interacts with the local environment to find
the local community. The identifier of core node in the local
community can be seen as its community tag in the global
view. Our method can be easily expanded to find the global
non-overlapping and overlapping community structures: Ex
perimental results on real life networks have demonstréted
advantage of AOCCM over previous LCD methods by either
effectiveness or efficiency. Furthermore, we have desdribe
how AOCCM can be expanded to a more efficient incremental
AOC-based method (AOCCM:-i) for mining communities from
dynamic and distributed networks. With the experiment, we
found that if the average convergent speed in each evolrjon
cycle is matched with the updating speed of a dynamic
network, the performance of the AOCCM-i algorithm might
be good without any delay.

One limitation of this paper is the core node selection: in
AOCCM, large node in terms of degree is selected as the core
node, the identifier of which is used as its community label
in the global version. However, this assumption may be too
strong, for example, in social networks, a person with wide
social relations may act as an intermediary between diftere
communities. In our future work, we will investigate the com
munity mapping technology, which automatically generates
community label according to the detected local community.

Another interesting topic for the future work is to consider
the dynamic change in the AOC system. In this paper, the
interaction relations between old nodes are fixed during-com
munity mining. However, in reality the interaction between
any two actors can arbitrarily generate and disappear, even
the weight of interaction can dynamically change with the
time. Such a dynamic situation may bring about new problems
to our current incremental computing model. Therefore, it
is essential to devise feasible approaches to deal with the
emergent problems in the dynamic AOC system.
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