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Abstract—Distributed and dynamic networks are ubiquitous
in many real-world applications. Due to the huge-scale, de-
centralized, and dynamic characteristics, the global topological
view is either too hard to obtain or even not available. So,
most existing community detection methods working on the
global view fail to handle such decentralized and dynamic large
networks. In this paper, we propose a novel autonomy-oriented
computing method (AOCCM) from the multiagent perspective for
detecting community structures in the distributed environment.
In particular, AOCCM utilizes reactive agents to pick the
neighborhood node with the largest structural similarity as the
candidate node, and thus determine whether it should be added
into local community based on the modularity gain. We further
improve AOCCM to a more efficient incremental version named
AOCCM-i for mining communities from dynamic networks.
AOCCM and AOCCM-i can be easily expanded to detect both
non-overlapping and overlapping global community structures.
Experimental results on real-life networks demonstrate that the
proposed methods can reduce the computational cost by avoiding
repeated structural similarity calculation and can still obtain the
high-quality communities.

Index Terms—Distributed and Dynamic Networks; Local Com-
munity Detection; Multiagent; Autonomy-Oriented Computi ng;
Incremental Computing

I. I NTRODUCTION

Real life networks, such as the transportation systems [1],
the computer science networks [2], and the online friend-
ship network systems (e.g., Twitter and Facebook) [3], [4],
are composed of a large number of highly interconnected
nodes/actors. And they often display a common topological
feature-community structure. Discovering the latent communi-
ties therein is a useful way to infer some important functions.

In general, a community should be thought of a set of
nodes that have more and/or better-connected edges between
its members than between its members and the remainder
of the network. The existing community definitions in the
literature can be roughly divided into three categories, one
is global-based [5], [6], [7], the other is based on the node-
similarity [8], [9], [10], [11], and the third is local-based [12],
[13], [14]. 1) The global-based definitions consider the graph
as a whole, and they follow the assumption that a graph has
community structure if it is different from a random graph i.e.,
null model. 2) The node-similarity-based definitions are based
the assumption that communities are groups of nodes similar
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to each other. Traditional methods, including hierarchical [8],
partitional [9] and spectral clustering [10], [11], are based
on this kind of definition. 3) The local-based definitions
compare the internal and external cohesion of a sub-graph.
The first recipe of this kind is LS-set [12], which stems
from social network analysis. The condition of LS-set is quite
strict and can be relaxed into the so-called weak definition
of community [13]. Some other local-based definitions can be
found in [15], [16], [17].

Since existing global-based and the node-similarity-based
community detection approaches require clear pictures of the
entire graph structure, they are often described as global com-
munity detection (in short as GCD henceforth). In those GCD
methods, the networks concerned are centralized (i.e., they are
processed in a centralized manner and with a global control)
instead of being distributed. However, in the real world, many
applications involve distributed networks, in which resources
and controls are often decentralized. As they are based on the
structure-oriented view, the characteristics and effectsof social
actors are neglected.

To consider the effects of actor characteristics, the actor-
structure crossing view has been recently introduced into
community detection, especially applications of the local
community detection (LCD) or autonomy-oriented computing
(AOC) [18], [19], [20]. The networks concerned by LCD/AOC
methods can be distributed, and each actor in the networks
is modeled as an agent who acts autonomously to find its
local community. In the work of Yang et al. [20], the commu-
nity evolution has been introduced into the proposed AOC-i
method, in which the new community structure can be quickly
derived based on the previous one and the incremental network
update. Although existing LCD/AOC methods have already
achieved significant success, further study is still neededon
seeking a nice balance between the high efficiency of local
search models and the high accuracy of detected communities.
Therefore, we proposed a novel autonomy-oriented computing
method from the multiagent perspective for detecting commu-
nity structures in the distributed environment, in which three
key problems are carefully concerned:

• How to model the real-life networks in the distributed
environment?

• How to effectively and accurately detect the local com-
munity starting from an arbitrary distributed node?

• How to monitor the influence on a given local community
and incrementally compute its current structure?

Targeting at effectively solving these above problems, in
this paper, we propose a fully distributed system guided by
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AOC methodology for modeling decentralized networks. In
this system, every node is assigned an autonomous agent
for local community detection. For the LCD task of each
agent, a heuristic algorithm named AOCCM is presented, and
then its incremental version called AOCCM-i is designed for
handling community evolution. More specifically, our main
contributions are summarized in three-fold as follows:

1) We present a novel modularity gain criterion, based on
which a heuristic algorithm named AOCCM is designed
for the LCD task of each agent. The proposed method
is able to start from an arbitrary node in a distributed
network, and repeats two iterative steps (Update and
Join) until the local community has reached its con-
vergent status or the agent’s clock time is over.

2) We expand AOCCM to a more efficient incremen-
tal method (AOCCM-i) for mining communities from
dynamic and distributed networks. The process of
AOCCM-i is an iterative process consisting of a series
of discrete evolutionary cycles. In each cycle, the new
objective can be incremental updated based on the pre-
vious results and the dynamic changes of the network.

3) Based on the local communities detected by AOCCM or
AOCCM-i, we further propose two global versions for
non-overlapping and overlapping community detections.
Thorough experiments on real-life networks demonstrate
that the proposed methods can keep a nice balance
between the high accuracy and short running time.

The remainder of the paper is organized as follows: Sec-
tion II presents the related work about autonomy-oriented
computing and dynamic network mining. In Section III, we
give a problem definition of distributed community mining
and the basic ideas behind our method. Section IV introduces
the AOC-based method for community mining. In Section V,
we validate the proposed methods using some real-world
networks, and examine its performances in detail. We further
present an incremental AOC method for dynamic network
mining in Section VI, and finally conclude this paper in
Section VII.

II. RELATED WORK

Here we discuss related work from two areas: autonomy-
oriented computing, and dynamic network mining.

A. Autonomy-oriented computing

Early work in LCD can be adopted to autonomy-oriented
computing, which can be classified into two main cate-
gories: namely, 1) degree-based methods, and 2)similarity-
based methods.

Degree-based methods evaluate the local community quality
by investigating nodesdegrees. Some naive solutions, such
as l-shell search algorithm [21], discovery-then-examination
approach [15], and outwardness-based method [16], only con-
sider the number of edges inside and outside a local com-
munity. Clauset [22] defines local modularity by considering
the boundary points of a sub-graph, and proposes a greedy
algorithm on optimizing this measure. Similarly, Luo et al.[17]
present another measurement as the ratio of the internal degree

and external degree of a sub-graph. Both measurements can
achieve high recall but suffer from low precision due to
including many outliers [15].

Similarity-based methods utilize similarities between nodes
to help evaluate the local community quality. LTE algorith-
m [23] is a representative of similarity based methods, using
a well-designed metric for local community quality known as
Tightness. There are a few alternative similarity-based metrics
such as VSP [24] and RSS [25] that can also help evaluate
the local community quality, although they are not originally
designed for LCD.

Some multiagent technologies have been introduced into
community detection [26], [27], in which, each actor in the
networks is modeled as an agent and acts autonomously to to
find its community. For example, Chen et al. [28] formulated
the agents’ utility by the combination of a gain function
and a loss function and make agents select communities
by a game-theoretic framework to achieve an equilibrium
for interpreting a community structure. To consider in the
distributed experiment, Yang et al. [20] utilized reactiveagents
to make distributed and incremental mining of communities
based only on their local views and interactions.

Our new autonomy-oriented computing method (AOCCM)
is also based on the multiagent perspective, in which, the
local search model of each agent is also an extension of
the similarity model. However, in comparison to the above
approaches which calculate the quantitative metrics for every
node in the neighbor sets, the structural similarity of eachpair
of nodes in AOCCM is calculated only once. By introducing
the notion of modularity gain, which is seen as a quantified
criterion to decide whether the candidate node can be added
into the local community or not, the effectiveness of AOCCM
is very high.

B. Dynamic network mining

Recently, finding communities in dynamic networks has
gained more and more attention. A family of events on both
communities and individuals have been introduced in [29]
to characterize evolution of communities. An evolutionary
version of the spectral clustering algorithms has been firstly
proposed by Chi et al. [30], in which the graph cut is used as
a metric for measuring community structures and community
evolutions. Their work has been further expanded by Lin et
al. [31], in which, a graph-factorization clustering algorith-
m named FacetNet has been proposed to analyze dynamic
networks. The above mentioned studies often adopted a two-
step approach where first static analysis is applied to the
snapshots of the social network at different time steps, andthen
community evolutions are introduced afterwards to interpret
the change of communities over time. As they overlooked
the old community structures as obtained in the previous
snapshot, this strategy of re-calculating is not efficient.In the
framework of multiagent system, Yang et al. [20] introduced
an incremental AOC-based method (AOC-i), in which the
new community structure can be quickly derived based on
the incremental change and the old community structure as
obtained in the previous cycle. The proposed incremental



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XXX, NO. XXX, APRIL 2015 3

computing method in our work is also AOC-based. Compared
with AOC-i, AOCCM-i does not require any user-defined
parameters, and the network updating can be more arbitrarily,
e.g., gradually inputting any number of new edges. We will
also prove in the experiment that the average convergent speed
of AOCCM-i is much faster than AOC-i’s.

III. PROBLEM DEFINITION AND PRELIMINARIES

As the nodes and the connectivity information in a dis-
tributed network are located at different positions. Community
mining in the distributed network is aimed to find all the
underlying communities only based on the local views and the
cooperations among the nodes. One possible solution to solve
this problem is to provide the clear picture of the network toan
administrative agent, on which a GCD algorithm is applied to
discover the underlying communities. However, this strategy
will have several inherent limitations when confronting large-
scale or highly-dynamic networks. To address this issues, the
methodology of AOC is presented in this paper, which is
derived from [18], [19]. Generally speaking, an AOC system
can be viewed a multiagent system (MAS), in which agents
interact with each other according to some pre-defined transfer
protocols to detect the local community.

A. Environment of AOC system

The presented AOC system is defined as a distributed
network in which nodes and the connectivity information are
decentralized, as shown in Fig. 1. LetG = (V,E) be a given
weighted distributed network, whereV is the set of nodes
(|V | = n), E is the set of edges (E = {eij}) that connect the
nodes inV , andwij is the weight on edgeeij . In the AOC
system, each node is defined as a tuple< Γi,Θi,Υi, li >,
where the components denote the identifiers of its adjacent
neighbors (Γi), the message pool on the node (Θi), the data
pool on the node (Υi), and the community label of the node
(li) respectively. For each nodevi of the distributed network,
there is one autonomous agentAi residing on it, which
is characterized by three characteristics, includingclock,
community, andboundary, denoted as< t, Ci(t),Bi(t) >.
The attributet denotes the clock maintained by agentAi, who
will adjust its clock byt← t+1 after each iteration. When its
clock reaches the final timeT , Ai will become inactive.Ci(t)
denotes the local community detected by agentAi at time t.
Initially, each agent only includes its appurtenant node inthe
community, e.g.,Ci(0) = {vi}. Then, it starts to enlarge its
local community based on the information it gathers from its
environment, until its clock reaches the final timeT or the
community cannot be changed any more. In other words, we
haveCi = Ci(T ). The boundary of each agent is closely
associated with its local community, which can be defined as
Bi(t) = {vj |vj 6∈ Ci(t), vk ∈ Ci(t), < vj , vk, wjk >∈ E}. At
the beginning,Bi(0) is set to be the adjacent neighbors (Γi) of
nodevi. During the community updating of agentAi, nodes
belonging to its community will be added from the boundary
one by one. In contrast, those nodes not belonging to the
community will be gradually excluded out of its boundary.
The above mentioned notations are summarized in Table I.

Remark. The identifier of nodevi, e.g.,i, is also used to
denote the address of the location, in which the node situates.
After knowing the identifier ofvi, Ai can send messages to
it. In the AOC system, the message pool on each node (Θi)
stores the messages from others agents, and the data pool
Υi stores the structural similarity between nodevi and its
adjacent nodes. Initially, bothΘi andΥi are empty. Without
loss of generality, let’s consider agentAi. Before conducting
local community mining,Ai sends messages to the neighbors
of nodevi (Θj,vj∈Γi

← Ai.message); then Aj,vj∈Γi
return

Γj,vj∈Γi
to calculate the structural similarities betweenvi and

its neighbors; finally,Ai stores all the structure similarity
values in the data pool of nodevi (Υi ← {sij |vj ∈ Γi}).
Therefore, the structural similarity of each pair of nodes in
AOC system is calculated only once.

B. Objective of AOC system

The objective of the AOC system can be achieved if the all
agents autonomously achieve their respective objectives:

C = {C1, · · · ,Cn}, (1)

where Ci is the stable local community of agentAi, and
∪1≤i≤nCi = V . The objective of agentAi is to find a local
community structure starting from its appurtenant nodevi,
only based on its local view (e.g.,Ci(t)∪Bi(t)) and interactions
with other agents.

Generally, a community is measured by a specific property
of the nodes within it. For this task, different community
measurements have been proposed [13], [16], [17], [22] in
recent years. In this paper, we adopt a structural similarity
measure from the cosine similarity function [23] to effectively
denotes the local connectivity density of any two adjacent
nodes in a distributed network. Here, we first formalize some
notions of the local community.

Definition 1 (Structural Similarity):Given a distributed
network G = (V,E), the structural similarity between two
adjacent nodesvi andvj is defined as :

sij =

∑

vk∈Γi∩Γj
wikwjk

∑

vk∈Γi
w2

ik

∑

vk∈Γj
w2

jk

. (2)

When we consider an unweighted network, the weightwij

of any edge can be set to 1 and the equation above can be
transformed to

sij =
|Γi ∩ Γj |

|Γi||Γj |
, (3)

which corresponds to the edge-clustering coefficient intro-
duced in [13].

Definition 2 (Internal Similarity and External Similarity):
By employing the structural similarity, we introduce internal
and external similarities of the communityCi(t) as follows:

Sin(Ci(t)) =
∑

vj ,vk∈Ci(t),<vj ,vk,wjk>∈E

sjk, (4)

Sout(Ci(t)) =
∑

vj∈Ci(t),vk∈Cc
i
(t),<vj ,vk,wjk>∈E

sjk, (5)

whereCci (t) is the complement ofCi(t).
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The structure-oriented view The agent-oriented view
Fig. 1. The environment of the AOC system.

TABLE I
NOTATIONS OF THEAOC SYSTEM.

Symbol Description
Γi the identifiers of adjacent neighbors ofvi
Θi the message pool onvi, which stores the messages from others agents
Υi the data pool onvi, which the structural similarity betweenvi and its adjacent nodes
li the community label ofvi
t the clock maintained by agentAi

Ci(t) the local community detected by agentAi at time t
Bi(t) the boundary area of agentAi at time t

The criterion agentAi uses to find the local community
containing the appurtenant nodevi is derived from [32], which
finds a community with a large number of edges within itself
and a small number of edges to the rest of the network.

Definition 3 (Local Modularity):The local modularity of
the communityCi(t), denoted asW (Ci(t)), is given as follows:

W (Ci(t)) =
I(Ci(t))

|Ci(t)|2
−

O(Ci(t))

|Ci(t)||Cci (t)|
, (6)

where I(Ci(t)) =
∑

vi,vj∈Ci(t)
Aij , O(Ci(t)) =

∑

vi∈Ci(t),vj∈Cc
i
(t) Aij , A = [Aij ] is an n × n adjacency

matrix of the distributed networkG.
Based on the definition of local modularity, we have the
following theorem.

Theorem 1:The local modularity value of the community
Ci(t) will increase whenCi(t) has high intra-cluster density
and low inter-cluster density.

PROOF:The termI(Ci(t)) is twice the number of the edges
within Ci(t), and O(Ci(t)) represents the number of edges
betweenCi(t) and the rest of the network. Each term is
normalized by the total number of possible edges in each
case. Note that we normalize the first term by|Ci(t)|2 rather
than |Ci(t)|(|Ci(t)| − 1) in order to conveniently derive the
modularity gain discussed below, but in practice this makes
little difference. Subject to this small difference, the local
modularity can be described as the intra-cluster density minus
the inter-cluster density. Thus the proof completes. �

Based on Definition 2 and Theorem 1, we have the follow-

ing corollary.
Corollary 1: The local modularity value of the community
Ci(t) will increase whenCi(t) has high internal similarity and
low external similarity.

PROOF:A high value ofSin(Ci(t)) reveals a large number of
common neighbors of any adjacent node pair inCi(t), resulting
in a high value of intra-cluster density. While, a low value of
Sout(Ci(t)) reveals a small number of common neighbors of
any adjacent node pair betweenCi(t) andCci (t), resulting in
a low value of intra-cluster density. �

In Definition 2, as the second term will be made negligible
by the large|Cci (t)|, a very small community can give a high
value ofW (Ci(t)). We further make an adjustment in the spirit
of the ratio cut and maximize the following criterion:

Ŵ (Ci(t)) = |Ci(t)||C
c
i (t)|(

I(Ci(t))

|Ci(t)|2
−

O(Ci(t))

|Ci(t)||Cci (t)|
), (7)

where the factor|Ci(t)||Cci (t)| penalizes very small and very
large communities and produces more balanced solutions.

Suppose at clockt, Ai explores the adjacent nodes in the
boundary areaBi(t), as shown in Fig. 2. It distinguishes
three types of links: those internal to the communityCi(t)(L),
betweenCi(t) and the nodevj(Lin), betweenCi(t) and others
nodes inBi(t)(Lout). To simplify the calculations, we express
the number of external links in terms ofL andkj(the degree
of node vj), so Lin = a1L = a2kj , Lout = b1L, with
b1 ≥ 0, a1 ≥

1
L

, a2 ≥
1
kj

(since anyvj in Bi(t) at least
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Fig. 2. TheŴ variant when a nodevj joins Ci(t).

has one neighbor inCi(t)). So, the value ofŴ for the current
community can be written as:

Ŵ (Ci(t)) =
n− |Ci(t)|

|Ci(t)|
2L− (a1 + b1)L. (8)

Then, the variantŴ of the communityCi(t) ∪ vj becomes

Ŵ (Ci(t)∪vj) =
n− |Ci(t)| − 1

|Ci(t)|+ 1
2L(1+a1)−(b1L+kj−a2kj).

(9)
So we define the modularity gain in the following.
Definition 4 (Modularity Gain):The modularity gain for

the communityCi(t) adopting a neighbor nodevj can be
denoted as:

△ŴCi(t)(vj) = Ŵ (Ci(t) ∪ vj)− Ŵ (Ci(t))

=
n− |Ci(t)| − 1

|Ci(t)|+ 1
2L(1 + a1)− (b1L+ kj − a2kj)

− (
n− |Ci(t)|

|Ci(t)|
2L− (a1 + b1)L)

= 2n
a2kj |Ci(t)| − L

|Ci(t)|(|Ci(t)|+ 1)
− kj . (10)

It means that if a small node in terms of degree links many
nodes in communityCi(t), adopting it may increase the local
modularity of Ci(t). Therefore,△ŴCi(t)(vj) can be utilized
as a criterion forAi to determine whether the candidate node
vj should be included in the communityCi(t+ 1) or not.

IV. AOC-BASED METHOD FOR COMMUNITY MINING

In this section, we propose anAOC-based method for
Community M ining (in short as AOCCM henceforth). First,
we introduce the basic idea of AOCCM and then present
algorithmic details including the complexity analysis. Second,
we introduce how to use AOCCM to detect the global non-
overlapping and overlapping community structures.

In the AOC system, each agent, e.g.,Ai, starts from
its appurtenant nodevi to find the densely connected local
community.Ai works with two iterative steps:Update step
andJoin step. First, the appurtenant nodevi is added into
the local community, e.g.,Ci(0) = {vi}. In theUpdate step,
Ai refreshes the the boundary areaBi(t), and calculate the
structural similarities between nodes in the communityCi(t)
and their neighbor nodes inBi(t). In theJoin step,Ai tries

to absorb a node inBi(t), e.g.,v∗j , having highest structural
similarity with nodes inCi(t) into the local community. If
△ŴCi(t)(v

∗
j ) > 0, then the nodev∗j will be inserted into

Ci(t + 1). Otherwise, it will be removed fromBi(t + 1) and
other nodes will be considered in the descending order of
the structural similarity. The two procedures above will be
repeated byAi in turn until its clock reaches the final timeT
or its boundary is empty. Then, the whole communityCi is
discovered.Ai further selects the node with maximum degree
in Ci as the core node, the identifier of which can be seen as
the label of detected community. The life-cycle of agentAi

on nodevi is given in the following.

Algorithm 1 The life-cycle of agentAi (AOCCM(Ai))
1: /*Initialization phase*/
2: t← 0;
3: Ci(0)← {vi};
4: Bi(0)← {vj |vj ∈ Γi};
5: /*Active phase*/
6: while t < T do
7: v∗j = argmaxvj∈Bi(t)

∑

vj∈Ci(t)
sij ;

8: if △ŴCi(t)(v
∗
j ) > 0 then

9: Bi(t+1)← Bi(t)∪{vk|vk ∈ Γj∗ , vk /∈ Ci(t)}−{v
∗
j };

10: Ci(t+ 1)← Ci(t) ∪ {v∗j };
11: else
12: Bi(t+ 1)← Bi(t)− {v∗j };
13: end if
14: t← t+ 1;
15: if Bi(t) = ∅ then
16: break;
17: end if
18: end while
19: /*Inactive phase*/
20: Ci = Ci(t);
21: li ← argmaxvj∈Ci

kj ;

Remark. Unlike existing methods [16], [22], [17], which
calculate the quantitative metrics for each node inB and select
the node who produces the greatest increment of the metric to
join C, each agentAi in the AOC system picks the neighbor
node with the largest structure similarity as the candidatenode
v∗j and calculate△ŴCi(t)(v

∗
j ) to determine whether it should

be added intoCi(t+1) or not. The structural similarity reflects
the local connectivity density of the network. The larger the
similarity between a node insideCi(t) and a node outside it,
the more common neighbors the two nodes share, and the more
probability they are at the same community. So the execution
of AOCCM on each agent is accelerated and the accuracy
remains high.

Complexity Analysis. The running time of AOCCM on
agent Ai is mainly consumed in line 7 of Algorithm 1,
which is selecting the neighbor node with the largest structure
similarity. AgentAi can implement it using a binary Fibonacci
heapHi [23], which takes two steps: 1)Extract (extract the
maximum element fromHi). As eachExtract operation of
Hi takesO(log n′

i) time and the body of the while loop is
executedn′ times, the total time for allExtract steps is
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O(n′ logn′
i), wheren′

i is the number of nodes inferred (nodes
in Ci ∪ Bi). 2) Update (for each node in currentBi(t), Ai

updates its sum of structure similarities with nodes inCi(t)).
First, the sum of structure similarities with nodes inCi(t)
for each nodevj ∈ Bi(t) should be computed, which can
be completed inO(k′i) time, wherek′i is the mean degree
of inferred nodes. For nodes which are not inHi, Ai inserts
them into Hi in O(1) time; otherwise, it takesO(1) time
to make an Increase-Key operation. As the above steps are
executedO(m′

i) times, wherem′
i is the number of edges in

Ci ∪ Bi. Therefore, the total time of theUpdate steps is
O(m′

ik
′
i). Adding all together, the total time complexity is

O(m′
ik

′
i + n′

i logn
′
i) for AOCCM on agentAi.

Non-overlapping Community Detection.Non-overlapping
community detection aims to find a goodK-way partition
P = {P1, · · · ,PK}, wherePk is the k-th community, in
which li = lj ∀vi, vj ∈ Pk, and P1 ∪ · · · ∪ PK ⊆ V ,
Pk ∩ Pk′ = ∅ ∀ k 6= k′. K is automatically determined by
results of eachAOCCM(Ai). Our assumption is that similar
adjacent agents will return analogous community structures,
in which the core nodes are almost unanimous. Therefore,
if Ai detects the the same community label, their appur-
tenant nodes are likely to be in the same community. The
process of AOCCM expansion algorithm for non-overlapping
(in short as AOCCMnO henceforth) is given as follows,
whereL = {li|i = 1, · · · , n} is the label list of nodes in
the distributed network. AOCCMnO could be completed in
O(m∗k∗ + n∗logn∗) time, wheren∗, m∗ are the number of
nodes and edges in the largestCi ∪ Bi, andk∗ is the mean
degree of inferred nodes in it.

Algorithm 2 AOCCMnO(G)
1: for i = 1; i <= n; i++ do
2: [Ci, li]← AOCCM(Ai); //Parallel Computing
3: end for
4: L = unique(L); // L = {l′k|1 ≤ k ≤ K}
5: K = Length(L);
6: for k = 1; k <= K; k ++ do
7: Pk = {vi|∀li = l′k};
8: end for

Overlapping Community Detection. While, for an over-
lapping partition, overlapping communities can be represented
as a membership matrixU = [ui,k], i = 1, · · · , n, k =
1, · · · ,K, where 0 ≤ ui,k ≤ 1 denotes the ratio of mem-
bership that nodevi belongs toPk. If node i belongs to
only one community,ui,k = 1, and it clearly follows that
∑K

k=1 ui,k = 1 for all 1 ≤ i ≤ n. With the detected
communities ofAOCCM(Ai), ui,k can be calculated as
follows:

ui,k =

∑

j=1,··· ,n
∧

lj=l′
k
δ(vi,Cj)

∑

j=1,··· ,n δ(vi,Cj)
, (11)

δ(vi,Cj) =

{

1 if vi ∈ Cj

0 otherwise.
. (12)

The process of AOCCM expansion algorithm for overlap-

ping (in short as AOCCMO henceforth) is given as follows.
The running time of AOCCMO is mainly consumed in lines
6-9 of Algorithm 3, which is calculating the membership that
nodei belongs toPk. The total time of those steps isO(nK).
Adding the local community extraction steps, the total time
complexity isO(m∗k∗ + n∗ logn∗ + nK) for AOCCMO.

Algorithm 3 AOCCMO(G)
1: for s = 1; s <= n; s++ do
2: [Ci, li]← AOCCM(Ai); //Parallel Computing
3: end for
4: L = unique(L); // L = {l′k|1 ≤ k ≤ K}
5: K = Length(L);
6: for i = 1; i <= n; i++ do
7: for k = 1; i <= K; k ++ do

8: ui,k =

∑
j=1,··· ,n

∧
lj=l′

k
δ(vi,Cj)

∑
j=1,··· ,n

δ(vi,Cj)
;

9: end for
10: end for

In the following example, we show how to detect commu-
nities hidden in the distributed network (see Fig. 3) using the
AOCCM algorithm. The original distributed network includes
12 nodes and 20 edges, the weight on the edges between nodes
v1, v5 andv9 is 3, and 1 on other edges. We will focus on a
single agent and observe its local community at different time
step during its entire life-cycle. In this case, we choose agent
A1, and the final timeT is set to be 12.

First, A1 initializes itself. The time of its clock is set to 0,
and its local community and boundary area at time 0 are set
to C1(0) = {v1}, B1(0) = {v2, v3, v5, v9} respectively.

Then,A1 starts its active phase. After calculating the struc-
ture similarities in Step 7, it selects nodev5 fromB1(0), which
has the highest structural similarity with the nodes inC1(0). In
Step 8,△ŴC1(0)(v5) is calculated to determine whether node
v5 should be added intoC1(1) or not. As△ŴC1(0)(v5) > 0,
node v5 is added intoC1(1), and B1(1) is refreshed to be
{v2, v3, v6, v7, v8, v9}. Next, in Step 14,A1 updates its clock,
the time of its clock is 1. In Step 15,A1 checks whether
it has reached a convergent status by observing its boundary
area. AsB1(1) is not empty and the current time is less than
T , A1 goes to Step 7 and starts a new iteration. After finishing
the second iteration, the local community and boundary area
of A1 and time 2 becomes:C1(2) = {v1, v5, v9}, B1(2) =
{v2, v3, v6, v7, v8, v10, v11, v12} respectively. AsB1(2) is not
empty and the current time is still less thanT . A1 goes to Step
7 and starts the third iteration, after which the local community
of A1 at time 3 keeps unchanged while its boundary areaB1(3)
is shrank to be{v3, v6, v7, v8, v10, v11, v12}. Once again,A1

has not reached its convergent status and continues the iterative
process until its clock time reaches 10. In this case, the
boundary areaB1(10) is empty, so it quits the cycle of
community updating.

Finally,A1 records its convergent local community asC1 =
C1(10) = {v1, v5, v9}, and further selects the identifier of the
node with maximum degree (e.g.,v5) as the label of detected
community. The entire life-cycle of agentA1 is completed and
A1 becomes inactive.
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Fig. 3. An illustrative example for AOCCM, AOCCMnO and AOCCMO.

TABLE II
REAL-WORLD NETWORKS FOR EXPERIMENTS.

Network |V | |E| k
Karate 34 78 4.59
NCAA 115 616 10.71
Facebook 4,039 88,234 43.69
PGP 10,680 24,340 4.56

Similarly, we can observe the activities of other agents.
When we acquire the attributive tags of all 12 nodes, the
global non-overlapping community structure has been detect-
ed. Finally, all local communities are further assembled tobe a
membership matrixU = [ui,k], which promulgates the global
overlapping community structure.

V. EVALUATION OF THE AOC SYSTEM

Four real-world undirected networks:Karate, NCAA,
Facebook and PGP are used to validate the AOC system.
Although these networks are given as centralized represen-
tations, for the purpose of testing our distributed method,
here we treat them as distributed networks, i.e., we consider
that their nodes and links are distributed (e.g., over different
sources, or geographical locations). Some characteristics of
these networks are shown in Table II, where|V | and |E|
indicate the numbers of nodes and edges respectively in the
network, andk indicates the average degree.Karate is a well
known social network that describes the friendship relations
between members of a karate club.NCAA is a representation of
the schedule of American Division I college football games.
Vertices in the network represent teams, which are divided
into eleven communities(or conferences) and five independent
teams. Edges represent regular season games between the
two teams they connect.Facebook has been anonymized
by replacing the Facebook-internal ids for each user with a
new value. Each edge tells whether two users have the same
political affiliations.PGP is a large scale social network, where
each node represents a peer and each tie points out that one
peer trusts the other.

A. Performance of AOCCM

The Effectiveness.To test the effectiveness of our approach,
the results of AOCCM are compared with the ground truth
communities of each network. To be special, letTi be the

Fig. 4. Comparison on Efficiency.

ground truth community including the nodevi, we can com-
pareTi and Ci in the framework of Precision, Recall and
F-measure (PRF) to assess our results. A higher value of
precision (P ) indicates fewer wrong classifications, while a
higher value of recall (R) indicates less false negatives. It is
common to use the harmonic mean of both measurements,
called F-measure, which weighs precision and recall equally
important. They are calculated as follows:

P (vi) =
|Ci ∩ Ti|

|Ci|
, (13)

R(vi) =
|Ci ∩ Ti|

|Ti|
, (14)

F1(vi) =
2P (vi)R(vi)

P (vi) +R(vi)
. (15)

Since the last two networks (Facebook andPGP) have no
ground truth, we apply FUC [7] to identify communities with
the global structure information of these two networks, and
utilize its detection results as the ground truth for the AOCCM
and LCD methods. This is based on the intuition that an LCD
method is acceptable if it can achieve an approximate resultas
a GCD approach does, because LCD methods usually perform
faster than GCD approaches. In addition, since the global
community quality metrics such as the well-known Modularity
metric [5] are not suitable to evaluate the quality of the
detected local community, we use each node in a community
as a seed and report algorithms’ average precision, recall and
F1-measure on this community. We compare AOCCM with
classical degree-based LCD algorithms LWP [17], ELC [16],
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TABLE III
ACCURACY COMPARISON ON REAL-WORLD NETWORKS.

Community Comm.
AOCCM LWP ELC LTE

size P R F1 P R F1 P R F1 P R F1

Karate-A 16 1.00 0.58 0.73 0.94 0.49 0.64 0.93 0.49 0.64 1.00 0.49 0.66
Karate-B 18 0.97 0.47 0.63 0.97 0.44 0.61 0.89 0.48 0.63 1.00 0.57 0.73

NCAA-AC 9 1.00 1.00 1.00 0.70 0.48 0.57 0.68 0.56 0.61 1.00 1.00 1.00
NCAA-BE 8 1.00 1.00 1.00 0.48 0.47 0.48 0.51 0.67 0.58 0.80 1.00 0.89
NCAA-Ten 11 1.00 1.00 1.00 0.33 0.26 0.29 0.17 0.21 0.19 1.00 1.00 1.00
NCAA-SE 12 1.00 1.00 1.00 0.81 0.55 0.65 0.83 0.85 0.84 1.00 1.00 1.00
NCAA-PT 10 0.91 0.82 0.86 0.68 0.58 0.62 0.68 0.73 0.70 0.91 0.82 0.86
NCAA-Others 5 0.12 0.24 0.16 0.21 0.40 0.27 0.14 0.52 0.22 0.19 0.32 0.24
NCAA-MA 13 1.00 0.50 0.67 0.78 0.48 0.60 0.81 0.78 0.79 0.86 0.50 0.64
NCAA-MV 8 1.00 1.00 1.00 0.76 0.70 0.73 0.67 0.70 0.69 1.00 1.00 1.00
NCAA-WA 10 1.00 1.00 1.00 0.65 0.45 0.53 0.67 0.60 0.63 1.00 1.00 1.00
NCAA-Twelve 12 1.00 1.00 1.00 0.67 0.40 0.52 0.61 0.56 0.35 1.00 1.00 1.00
NCAA-SB 7 0.64 0.51 0.57 0.49 0.61 0.54 0.23 0.69 0.35 0.64 0.51 0.56
NCAA-USA 10 0.74 0.66 0.70 0.41 0.32 0.36 0.25 0.23 0.24 0.74 0.66 0.70
Facebook-1 341 1.00 0.16 0.28 0.99 0.05 0.10 0.88 0.40 0.55 1.00 0.15 0.26
Facebook-2 66 0.88 0.48 0.61 0.42 0.14 0.21 0.16 0.96 0.27 0.94 0.57 0.71
Facebook-3 308 0.94 0.26 0.41 0.92 0.07 0.13 0.41 0.15 0.22 0.97 0.18 0.30
Facebook-4 25 0.96 1.00 0.98 1.00 0.36 0.53 0.97 0.59 0.74 1.00 1.00 1.00
Facebook-5 206 1.00 0.33 0.50 1.00 0.09 0.17 0.97 0.31 0.47 1.00 0.33 0.49
Facebook-6 62 0.94 0.42 0.58 0.90 0.19 0.31 0.56 0.32 0.41 0.99 0.44 0.61
Facebook-7 408 0.94 0.58 0.71 0.38 0.04 0.07 0.21 0.17 0.18 0.96 0.60 0.74
Facebook-8 483 0.94 0.19 0.31 0.81 0.05 0.09 0.16 0.13 0.14 0.97 0.16 0.27
Facebook-9 442 0.98 0.30 0.45 0.97 0.07 0.14 0.97 0.20 0.33 1.00 0.24 0.38
Facebook-10 73 0.94 0.92 0.93 0.53 0.19 0.28 0.06 0.12 0.08 1.00 1.00 1.00
Facebook-11 237 0.99 0.87 0.92 0.26 0.07 0.10 0.15 0.03 0.04 1.00 0.82 0.90
Facebook-12 226 0.98 0.68 0.80 0.96 0.13 0.23 0.10 0.21 0.14 0.99 0.46 0.63
Facebook-13 554 0.98 0.18 0.31 0.96 0.06 0.10 0.63 0.37 0.46 0.99 0.18 0.21
Facebook-14 548 1.00 0.11 0.20 0.99 0.03 0.07 0.98 0.24 0.39 1.00 0.08 0.12
Facebook-15 60 1.00 0.33 0.50 0.98 0.13 0.23 0.99 0.33 0.50 0.98 0.14 0.24

PGP-1 395 0.95 0.16 0.28 0.86 0.16 0.27 0.82 0.12 0.21 0.96 0.12 0.21
PGP-2 303 0.93 0.22 0.36 0.92 0.22 0.36 0.73 0.19 0.30 0.93 0.19 0.32
PGP-3 974 0.94 0.13 0.24 0.74 0.13 0.22 0.84 0.17 0.29 0.94 0.18 0.31
PGP-4 379 0.99 0.12 0.21 0.78 0.12 0.20 0.90 0.17 0.29 0.99 0.13 0.21
PGP-5 1457 0.93 0.11 0.20 0.88 0.11 0.20 0.76 0.08 0.15 0.93 0.09 0.17
PGP-6 798 0.98 0.06 0.11 0.94 0.06 0.11 1.00 0.08 0.16 0.98 0.08 0.15
PGP-7 1289 0.96 0.14 0.24 0.80 0.14 0.23 0.76 0.13 0.22 0.96 0.17 0.29
PGP-8 513 0.97 0.17 0.29 0.87 0.17 0.28 0.87 0.11 0.20 0.97 0.11 0.20
PGP-9 417 0.93 0.17 0.28 0.93 0.17 0.28 0.92 0.27 0.41 0.92 0.13 0.22
PGP-10 1091 0.93 0.22 0.36 0.86 0.22 0.35 0.83 0.19 0.31 0.93 0.31 0.47

and a similarity-based algorithm LTE [23]. The comparison
results are presented in Table III. Note that FUC totally detects
85 communities onPGP, from which ten large communities in
terms of size are selected to compare the accuracy. In Table III,
we can observe that: 1)the recall values for all methods are
overall worse than precision values, this is because LCD
methods are based on the greedy search, which will trend
to find a local optimal solution; 2)AOCCM almost achieves
the high precision for all datasets, which demonstrate the
superiority of its local search model over the other methods;
3)AOCCM usually outperforms LMR and ELC, and have a
slight advantage over LTE, even though the later has been

proven by extensive experiments to be one of the most accurate
algorithms among previous LCD methods in[23].

The Efficiency. We further compare the efficiency of
AOCCM, LMR, ELC and LTE, Fig. 4 shows the average
running time of LCD methods starting from each node in
the four test graphs. Apparently, the execution of AOCCM
is more accelerated. Both AOCCM and LTE are similarity-
based algorithms, their difference lies at the definition of
local modularity. Compared with AOCCM, the calculation of
modularity gain in LTE is more complex, which will consume
extra time. LMR and ELC are degree-based LCD algorithms,
which need calculate the quantitative metrics for each node
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Fig. 5. AOCCMnO on small social networks.

in B. The metric calculations are somewhat duplicate, which
can not be simplified. Especially, the stopping criteria for
ELC is to jude whether the current community is a “p-strong
community”, which will cost more time in every search step.

B. Performance of AOCCMnO

Here, we first apply AOCCMnO to the two small social net-
works with ground truth:Karate andNCAA. The purpose is
to gain a direct understanding of non-overlapping community
detection by network visualization. Then, we further compare
AOCCMnO with classical GCD methods, such as FNM [5],
FUC [7], METIS [33], and Cluto [34].
Karate is split into two parties following a disagreement

between an instructor (node 1) and an administrator (node
34), which serves as the ground truth about the commu-
nities in Fig. 5(a). We employ AOCCMnO to extract non-
overlapping communities from the network. The result is
shown in Fig. 5(b), which supplements the division of the club
with more information. More interestingly, AOCCMnO actu-
ally tends to partition this network into four rather than two
communities, as indicated by the nodes in four colors/shapes

in Fig. 5(b). This implies that there exits a latent sub-party
(including nodes 6, 7, 11) inside the party led by node 1, and
a latent sub-party (including nodes 25, 26, 32) inside the party
led by node 34.

The ground truth ofNCAA labels nodes with their actual
conferences, corresponding twelve different colors/shapes in
Fig. 5(c). As shown in Fig. 5(d), AOCCMnO generally well
captures the “sharp-cut” teams in conferences “AC”, “BE”,
“Ten”, “SE”, “MV”, “WA”, and “Twelve” respectively, al-
though there yet exists some teams assigned mistakenly. Note
that nearly all the ”Orangered rectangle” in Fig. 5(c) are totally
detected mistakenly by AOCCMnO. This is indeed reasonable
since those nodes have very few internal connections, actually,
they represent five independent teams (Utah State, Navy, Notre
Dame, Connecticut and Central Florida) in NCAA.

Modularity and Running Time Comparison. The global
non-overlapping community structure can be evaluated by
some predefined quantitative criterions, in which, the mod-
ularity of Newman and Girvan [5] is one of most popular
quality functions. Modularity can then be written as follows
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TABLE IV
MODULARITY AND RUNNING TIME COMPARISON BY AOCCMNO, FNM [5], FUC [7], METIS [33],AND CLUTO [34].

Network AOCCMnO FNM FUC METIS Cluto
Karate 0.38/0.03s 0.38/0.05s 0.42/0.03s 0.24/0.01s 0.36/0.02s
NCAA 0.58/0.20s 0.57/0.20s 0.60/0.06s 0.08/0.01s 0.60/0.03s
Facebook 0.73/2.68s 0.78/8.45m 0.84/6.29s 0.79/0.53s 0.82/4.24s
PGP 0.67/0.44s 0.85/179.42m 0.88/22.50s 0.83/1.76s 0.72/11.90s
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Fig. 6. The accuracy for differentα on the four test networks.

Q =
1

2m

∑

ij

(Aij −
kikj
2m

)χ(li, lj), (16)

where theχ-function yields one if nodesvi andvj are in the
same community (li = lj), zero otherwise.

In order to verity the effectiveness of AOCCMnO, we
compare it with classical GCD methods, such as FNM [5],
FUC [7], METIS [33], and Cluto [34]. For each method/net-
work, Table IV displays the modularity that is achieved and
the running time. The modularity obtained by AOCCMnO
are slightly lower than FUC’s, but it outperforms nearly all
the other methods. In terms of running time, METIS has
a great advantage due to its powerful parallel processing
modules. However, it perform poor on graphs with obscure
community structure, e.g.,Karate andNCAA. AOCCMnO,
on the contrary, keeps a nice balance between high modularity
and short running time.

C. Performance of AOCCMO

To evaluate the performance of AOCCMO, we also employ
the PRF framework. Let̂Ck be thek-th overlapping com-
munity, which obeyŝC1 ∪ · · · ∪ ĈK ⊆ V . In the following,
we introduce a membership thresholdα, 0 < α ≤ 1 , to
control the scale at which we want to observe the overlapping
communities in a network.

Definition 5 (α-Overlapping Community):The k-th α-
overlapping community, denoted bŷCk(α), is defined

as:
Ĉk(α) = {vi|ui,k ≥ α}. (17)

Therefore, we can use each node in a overlapping com-
munity as a seed and report AOCCMO’s average precision,
recall and F1-measure. The precision(P̂ (α)), recall(R̂(α)) and
F1-measure(̂F1(α)) of the detectedα-overlapping community
structure are defined as follows:

P̂ (α) =

∑

k=1,··· ,K

∑

vi∈Ĉk(α)
|Ĉk(α)∩Ti|

|Ĉk(α)|
∑

k=1,··· ,K

∑

vi∈Ĉk(α)
1

, (18)

R̂(α) =

∑

k=1,··· ,K

∑

vi∈Ĉk(α)
|Ĉk(α)∩Ti|

|Ti|
∑

k=1,··· ,K

∑

vi∈Ĉk(α)
1

, (19)

F̂1(α) =
2P̂ (α)R̂(α)

P̂ (α) + R̂(α)
. (20)

Fig. 6 shows the accuracy in the function ofα for the
four test graphs, from which we can observe that: 1)the recall
values for AOCCMO have a significant improvement in all
scales, compared with previous AOCCM algorithms; 2) the
values ofα in the range[0.6, 0.8] are optimal, in the sense
that overlapping communities extracted by AOCCMO in this
region have a high F1-measure; 3)AOCCMO performs better
in dense networks rather than in sparse networks.

VI. I NCREMENTAL AOC-BASED METHOD FOR MINING

DYNAMIC NETWORKS

In real world, an AOC system could be updated period-
ically depending on new local updates. We can useG =
{G1,G2, · · · ,GT } to denote a collection of snapshot graphs
for a given dynamic network overT discrete time steps. Let
Cl = {Cl

1, · · · ,C
l
nl} be the archived objective of the AOC

system at timel, wherenl is the total number of agents. The
problem of incremental community detection can be simplified
to accurately and efficiently computeCl+1 when the network
is updated fromGl to Gl+1.

One immediate approach to solve the above problem is to
directly apply the AOCCM algorithm on each agent in the
updated network as discussed in Section IV. Obviously, the
strategy of re-calculating is not efficient as it overlooks the old
community structure in the previous snapshot. To address this
issues, we try to find an incremental function̥∗, which can
figure out the new community structure based on the previous
archived objective and the incremental update:

C
l = ̥

∗(Cl−1,∆G
l), (21)
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where ∆Gl = (∆V l,∆El) = Gl − Gl−1 denotes the
incremental update of the networkG at time l.

A. Incremental AOC-based method

In the incremental AOC-based method (in short as AOCCM-
i henceforth), the network to be mined is dynamically chang-
ing, that will trigger the agents to detect the new community
structure. We can understand the AOCCM-i algorithm as an
iterative process consisting of a series of discrete evolutionary
cycles. In thel-th evolutionary cycle, the new objective of
agentAi can be quickly derived based on its previous local
community (Cl−1

i ) and the incremental update of the network
(∆Gl). The life-cycle of agentAi in thel-th evolutionary cycle
is given in Algorithm 4:

Algorithm 4 The life-cycle ofAi in thel-th evolutionary cycle
1: /*Initialization phase*/
2: t← 0;
3: Cli(0)← C

l−1
i ;

4: Bl
i(0) ← {vj |vj 6∈ C

l−1
i , vk ∈ C

l−1
i , < vj , vk, wjk >∈

∆El};
5: if Bl

i(0) = ∅ then
6: go to Step 22;
7: end if
8: /*Active phase*/
9: while t < T do

10: v∗j = argmaxvj∈Bl
i
(t)

∑

vj∈Cl
i
(t) sij ;

11: if △ŴCl
i
(t)(v

∗
j ) > 0 then

12: Bl
i(t+1)← Bl

i(t)∪{vk|vk ∈ Γj∗ , vk /∈ Cli(t)}−{v
∗
j };

13: Cli(t+ 1)← Cli(t) ∪ {v
∗
j };

14: else
15: Bl

i(t+ 1)← Bl
i(t)− {v

∗
j };

16: end if
17: t← t+ 1;
18: if Bl

i(t) = ∅ then
19: break;
20: end if
21: end while
22: /*Inactive phase*/
23: Cl

i = Ci(t);
24: lli ← argmaxvj∈Cl

i
kj ;

Remark. In Algorithm 4, the initial local community of
agentAi is set to beCl−1

i , which is the obtained objective
in the previous cycle. In the AOC system, once the network
is updated, agentAi can quickly monitor the changes in
its local environment by the cooperation among agents. If
the incremental update,∆Gl, happens to agentAi, we have
Bl
i(0) 6= ∅, which will be initialized as{vj|vj 6∈ C

l−1
i , vk ∈

C
l−1
i , < vj , vk, wjk >∈ ∆El}. Otherwise,Bl

i(0) = ∅, agent
Ai will directly turn to the inactive phase. Except for the
initialization phase, the life-cycle of agentAi in AOCCM-
i is almost the same as that in the AOCCM algorithm, as
shown in Algorithm 1. Like AOCCM, AOCCM-i can be also
expanded to detect the global non-overlapping and overlapping
community structures of the dynamic distributed networks.
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(c) The l-th evolutionary cycle(b) Network updating

Fig. 7. An illustrative example for AOCCM-i.

Fig.7 shows an example of AOCCM-i, which focuses on
agentA8 from its l-1-th evolutionary cycle to thel-th one. In
the previous evolutionary cycle,A8 detects a local community
including nodes{v8, v6, v7, v5}; then the network is updated
by adding into three new edges{e15, e19, e59}. A8 monitors
the changes, and initializes its local community and boundary
area to beCl8(0) = {v8, v6, v7, v5}, B

l
8(0) = {v1, v9}

respectively. Next,A8 starts its active phase and continues
the iterative searching process until its clock time reaches
T or it has reached its convergent status. Finally, the local
community detected byA8 at the l-th evolutionary cycle is
{v8, v6, v7, v5, v1, v9}. In Fig.8, we further show how to use
AOCCM-i to mine the dynamicNCAA. In each update of
NCAA, 100 new edges are added. The entire process contains
six evolutionary circles. Figs.8(a)-8(f) present the snapshots
of NCAA after each evolutionary cycle, respectively. The final
NCAA from the entire process is shown in Fig.8(f), from which
we can see that the detected community structure is almost the
same as that found by the AOCCMnO.

B. Performance analysis of the AOCCM-i method

We first take the similar method as in [20] to analyze
the computational complexity of AOCCM-i. The time steps
required byAi to finish local community mining in thel-
th evolutionary cycle is defined astli. Without considering
the parallel computing, the total time steps required by all
agents in thel-th evolutionary cycle can be calculated as
τ l =

∑nl

i=1 t
l
i.

Thus, we can approximately evaluate the efficiency of the
AOCCM-i method usingτ l. Smaller value ofτ l indicates that
less time is required in thel-th evolutionary cycle. In the
experiments, for each network, we use three different strategies
to mine its community structure. The first one is based on
the re-calculating strategy, that is, directly applying AOCCM-
nO on the updated network for non-overlapping community
detection. The second one is based on Eq.21, in which, the
new community structure will be detected by AOCCM-i based
on the previous objective and the incremental update of the
network. The last one is AOC-i proposed by Yang et al. [20].
Note that all networks used here are considered as dynamic
ones, which grow gradually by adding a fixed number (µ)
of edges in each evolutionary cycle. As shown in Fig. 9,
AOCCM-i outperforms AOC-i, and theτ value of AOCCM-
i is smaller than AOCCM’s by nearly two magnitude. Our
method works efficiently and requires much less time to deal
with the new network after each update.
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(a) 1-st evolutionary cycle:n1 = 42, m1 = 100
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(b) 2-nd evolutionary cycle:n2 = 64, m2 = 200
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(c) 3-th evolutionary cycle:n3 = 79, m3 = 300
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(d) 4-th evolutionary cycle:n4 = 93, m4 = 400
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(e) 5-th evolutionary cycle:n5 = 104, m5 = 500

591
4224

10

11
99 82

50
47

66885
51 4112 74

10584

78

8

11223
79

69

5222

1099

17
70 94

89
54

98

29

1
25

108

73111

11553

4
103

75

43

9034
46

106 110

38

2

20

104

37

66

57

114

77

97
96 18

58

28
26

60

64

63

45
71

93

88

76 59926721 87

49

113

44

62
8656

80
13

3519

72

32
100

15

55

31

95

107

102
81

3036

39

27

7

40

101
14

65
83

33
61

48

316

(f) 6-th evolutionary cycle:n6 = 115, m6 = 616

Fig. 8. The process of mining the dynamicNCAA.

In each evolutionary cycle of AOCCM-i, a fixed number (µ)
of edges are added into the network, which can be seen as the
updating speed of a dynamic network. Fig. 10 further presents
the relationship between the averageτ value and the updating
speedµ, from which, we can see that Avg.τ grows with
the increase ofµ. This implies that if the average convergent
speed of agents could be matched with the updating speed of
the dynamic network, AOCCM-i will perform well without
any delay; otherwise, it may result in some delay.

We finally compare AOCCM-i and AOC-i on the effec-
tiveness. For each algorithm/network, Figs.11(a)-11(d) display
the modularity that is achieved in each evolutionary cycle.
As shown in Fig.11, theQ values of AOCCM-i are larger
than AOC-i’s on the first three networks, while AOCCM-
i is slightly inferior to AOC-i on PGP. This might due to
the strict definition of the modularity gain, which decides
whether the candidate node should be added into the local
community. AsPGP is a large sparse network compared with
other networks, the local search model by AOCCM-i might

quickly reach the convergent status. One possible solutionis
to relax the selection criteria, e.g., redefine the modularity
gain as△ŴCi(t)(vj) = Ŵ (Ci(t) ∪ vj)/Ŵ (Ci(t)), and then
use a threshold to control the candidate node selection. We
will investigate this in our further work.

VII. C ONCLUSION

Real life networks are distributed and composed of a set
of social actors and their interaction relations. Multiagent
technologies have already achieved significant success in past
years, especially for modeling and analyzing autonomous and
distributed multi-entity systems. The questions then arise of
how to connect real life networks and multiagent systems and
how to use multiagent technologies to model and analyze the
community structures of real life networks. This paper attempt-
s to answer this problem by surveying real life networks from
a multiagent perspective.

In this paper, we have proposed an AOC-based method
for community mining (AOCCM), in which, each actor in
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Fig. 9. Efficiency comparisons between AOCCM, AOCCM-i and AOC-i on
the four test networks.
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Fig. 11. Efficiency comparisons between AOCCM, AOCCM-i and AOC-i
on the four test networks.

the distributed networks is associated with an agent who
spontaneously interacts with the local environment to find
the local community. The identifier of core node in the local
community can be seen as its community tag in the global
view. Our method can be easily expanded to find the global
non-overlapping and overlapping community structures. Ex-
perimental results on real life networks have demonstratedthe
advantage of AOCCM over previous LCD methods by either
effectiveness or efficiency. Furthermore, we have described
how AOCCM can be expanded to a more efficient incremental
AOC-based method (AOCCM-i) for mining communities from
dynamic and distributed networks. With the experiment, we
found that if the average convergent speed in each evolutionary
cycle is matched with the updating speed of a dynamic
network, the performance of the AOCCM-i algorithm might
be good without any delay.

One limitation of this paper is the core node selection: in
AOCCM, large node in terms of degree is selected as the core
node, the identifier of which is used as its community label
in the global version. However, this assumption may be too
strong, for example, in social networks, a person with wide
social relations may act as an intermediary between different
communities. In our future work, we will investigate the com-
munity mapping technology, which automatically generates
community label according to the detected local community.

Another interesting topic for the future work is to consider
the dynamic change in the AOC system. In this paper, the
interaction relations between old nodes are fixed during com-
munity mining. However, in reality the interaction between
any two actors can arbitrarily generate and disappear, even
the weight of interaction can dynamically change with the
time. Such a dynamic situation may bring about new problems
to our current incremental computing model. Therefore, it
is essential to devise feasible approaches to deal with the
emergent problems in the dynamic AOC system.
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[1] R. Guimerà, S. Mossa, A. Turtschi, and L. N. Amaral, “Theworldwide
air transportation network: Anomalous centrality, community structure,
and cities’ global roles,”Proceedings of the National Academy of
Sciences, vol. 102, no. 22, pp. 7794–7799, 2005.

[2] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,”Nature, vol. 466, no. 7307, pp. 761–
764, 2010.

[3] B. Yang, D. Liu, and J. Liu, “Discovering communities from social
networks: Methodologies and applications,” inHandbook of Social
Network Technologies and Applications. Springer, 2010, pp. 331–346.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XXX, NO. XXX, APRIL 2015 14

[4] Z. Lu, X. Sun, Y. Wen, G. Cao, and T. La Porta, “Algorithms and
applications for community detection in weighted networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. PP, no. 99, 2014.

[5] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,”Physical review E, vol. 69, no. 2, p. 026113,
2004.

[6] Z. Bu, C. Zhang, Z. Xia, and J. Wang, “A fast parallel modularity
optimization algorithm (fpmqa) for community detection inonline social
network,” Knowledge-Based Systems, vol. 50, pp. 246–259, 2013.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,”Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[8] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and
R. Tibshirani, The elements of statistical learning. Springer, 2009,
vol. 2, no. 1.

[9] A. Hlaoui and S. Wang, “A direct approach to graph clustering.” in
Neural Networks and Computational Intelligence, 2004, pp. 158–163.

[10] B. Yang and J. Liu, “Discovering global network communities based on
local centralities,”ACM Transactions on the Web (TWEB), vol. 2, no. 1,
p. 9, 2008.

[11] L. Yang, X. Cao, D. Jin, X. Wang, and D. Meng, “A unified semi-
supervised community detection framework using latent space graph
regularization,”IEEE Transactions on Cybernetics, vol. PP, no. 99, 2015.

[12] F. Luccio and M. Sami, “On the decomposition of networksin minimally
interconnected subnetworks,”Circuit Theory, IEEE Transactions on,
vol. 16, no. 2, pp. 184–188, 1969.

[13] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
“Defining and identifying communities in networks,”Proceedings of
the National Academy of Sciences of the United States of America, vol.
101, no. 9, pp. 2658–2663, 2004.

[14] T. Zhang and B. Wu, “A method for local community detection by
finding core nodes,” inProceedings of the 2012 International Conference
on Advances in Social Networks Analysis and Mining (ASONAM 2012).
IEEE Computer Society, 2012, pp. 1171–1176.

[15] J. Chen, O. Zaı̈ane, and R. Goebel, “Local community identification
in social networks,” inSocial Network Analysis and Mining, 2009.
ASONAM’09. International Conference on Advances in. IEEE, 2009,
pp. 237–242.

[16] J. P. Bagrow, “Evaluating local community methods in networks,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2008,
no. 05, p. P05001, 2008.

[17] F. Luo, J. Z. Wang, and E. Promislow, “Exploring local community
structures in large networks,”Web Intelligence and Agent Systems, vol. 6,
no. 4, pp. 387–400, 2008.

[18] J. Liu, X. Jin, and K. C. Tsui, “Autonomy-oriented computing (aoc):
formulating computational systems with autonomous components,”Sys-
tems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, vol. 35, no. 6, pp. 879–902, 2005.

[19] J. Liu, “Autonomy-oriented computing (aoc): The nature and implica-
tions of a paradigm for self-organized computing,” inNatural Computa-
tion, 2008. ICNC’08. Fourth International Conference on, vol. 1. IEEE,
2008, pp. 3–11.

[20] B. Yang, J. Liu, and D. Liu, “An autonomy-oriented computing approach
to community mining in distributed and dynamic networks,”Autonomous
Agents and Multi-Agent Systems, vol. 20, no. 2, pp. 123–157, 2010.

[21] J. P. Bagrow and E. M. Bollt, “Local method for detectingcommunities,”
Physical Review E, vol. 72, no. 4, p. 046108, 2005.

[22] A. Clauset, “Finding local community structure in networks,” Physical
review E, vol. 72, no. 2, p. 026132, 2005.

[23] J. Huang, H. Sun, Y. Liu, Q. Song, and T. Weninger, “Towards online
multiresolution community detection in large-scale networks,” PloS one,
vol. 6, no. 8, p. e23829, 2011.

[24] K. Li and Y. Pang, “A vertex similarity probability model for finding
network community structure,” inAdvances in Knowledge Discovery
and Data Mining. Springer, 2012, pp. 456–467.

[25] H.-H. Chen, L. Gou, X. L. Zhang, and C. L. Giles, “Discovering missing
links in networks using vertex similarity measures,” inProceedings of
the 27th Annual ACM Symposium on Applied Computing. ACM, 2012,
pp. 138–143.

[26] Y. Jiang and J. Jiang, “Understanding social networks from a multiagent
perspective,”Transactions on Parallel and Distributed Systems, vol. 25,
no. 10, pp. 2743–2759, 2014.

[27] W. Wang and Y. Jiang, “Community-aware task allocationfor social
networked multiagent systems,”Transactions on Cybernetics, vol. 44,
no. 9, pp. 1529–1543, 2014.

[28] W. Chen, Z. Liu, X. Sun, and Y. Wang, “Community detection in social
networks through community formation games,” inIJCAI Proceedings-
International Joint Conference on Artificial Intelligence, vol. 22, no. 3,
2011, p. 2576.

[29] S. Asur, S. Parthasarathy, and D. Ucar, “An event-basedframework for
characterizing the evolutionary behavior of interaction graphs,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 3, no. 4,
p. 16, 2009.

[30] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “Evolutionary
spectral clustering by incorporating temporal smoothness,” in Proceed-
ings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2007, pp. 153–162.

[31] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet: a
framework for analyzing communities and their evolutions in dynamic
networks,” inProceedings of the 17th international conference on World
Wide Web. ACM, 2008, pp. 685–694.

[32] Y. Zhao, E. Levina, and J. Zhu, “Community extraction for social
networks,”Proceedings of the National Academy of Sciences, vol. 108,
no. 18, pp. 7321–7326, 2011.

[33] G. Karypis, “Multi-constraint mesh partitioning for contact/impact
computations,” inProceedings of the 2003 ACM/IEEE conference on
Supercomputing. ACM, 2003, p. 56.

[34] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical clus-
tering using dynamic modeling,”Computer, vol. 32, no. 8, pp. 68–75,
1999.

Zhan Bu received his Ph.D. degree in Computer
Science from Nanjing University of Aeronautics
and Astronautics, China, in 2014. He is currently
a lecturer of Jiangsu Provincial Key Laboratory of
E-Business at Nanjing University of Finance and
Economics. He is the member of CCF. His recent
research interests include social network analysis,
complex network and data mining.

Zhiang Wu received his Ph.D. degree in Computer
Science from Southeast University, China, in 2009.
He is currently an associate professor of Jiangsu
Provincial Key Laboratory of E-Business at Nanjing
University of Finance and Economics. He is the
member of the ACM, IEEE and CCF. His recent
research interests include distributed computing, so-
cial network analysis and data mining.

Jie Caoreceived his Ph.D. degree from Southeast U-
niversity, China, in 2002. He is currently a professor
and the dean of School of Information Engineering
at Nanjing University of Finance and Economics. He
has been selected in the Program for New Century
Excellent Talents in University (NCET) and awarded
with Young and Mid-aged Expert with Outstanding
Contribution in Jiangsu province. His main research
interests include cloud computing, business intelli-
gence and data mining.

Yichuan Jiang received his Ph.D. degree from
Fudan University, China, in 2002.He is currently a
full professor and the director of the Distributed In-
telligence and Social Computing Laboratory, School
of Computer Science and Engineering, Southeast U-
niversity, Nanjing, China. He is a member of ACM, a
senior member of IEEE. His main research interests
include multiagent systems, social networks, social
computing, and complex distributed systems.


