
1040 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 5, SEPTEMBER 2012

The Rich Get Richer: Preferential Attachment in
the Task Allocation of Cooperative Networked
Multiagent Systems With Resource Caching

Yichuan Jiang, Member, IEEE, and Zhichuan Huang

Abstract—In networked multiagent systems (NMASs) with re-
source caching, resource replicas are cached in favor of the agents
who accessed such resources most recently and frequently. Task
execution in NMASs is described through agents’ operations when
accessing necessary resources distributed in the networks, and
thus, agents with richer experiences executing tasks will have
higher access to resources. To optimize tasks’ resource access time,
we investigate two types of preferential attachments in the task
allocation of NMASs with resource caching: history and present
preferential attachments, in which an agent has higher access to
a resource if that agent has richer history (or present) accessing
experiences for that resource. Therefore, agents that were (or are)
heavily burdened by tasks may have certain preferential rights to
new tasks in the future. Our experiments found that preferential
attachment in task allocation can effectively reduce tasks’ execu-
tion time, particularly when the network context is considered
and the number of tasks is high. In addition, we discovered
two interesting phenomena: 1) Compromise between preferential
attachment and load balancing can achieve better performance
than single preferential attachment when there are too many tasks
waiting, and 2) the integration of history and present preferential
attachments can outperform either history or present preferential
attachment alone in task allocation.

Index Terms—Distributed systems, load balancing, networked
multiagent systems (NMASs), preferential attachment, resource
caching, task allocation.

Manuscript received September 19, 2010; revised May 23, 2011 and
September 18, 2011; accepted December 27, 2011. Date of publication
March 2, 2012; date of current version August 15, 2012. This work was
supported in part by the National Natural Science Foundation of China under
Grants 61170164 and 60803060, the Specialized Research Fund for the Doc-
toral Program of Higher Education of State Education Ministry of China under
Grants 200802861077 and 20090092110048, the General Program of Human-
ities and Social Sciences in University of State Education Ministry of China
under Grant 10YJCZH044, the Program for New Century Excellent Talents in
University of State Education Ministry of China under Grant NCET-09-0289,
and the Special Fund for Fast Sharing of Science Paper in Net Era by Center of
Science and Technology Development of State Education Ministry of China un-
der Grant 20110092110053. This paper was recommended by Associate Editor
K. T. Seow.

Y. Jiang is with the Key Laboratory of Computer Network and Information
Integration of State Education Ministry, School of Computer Science and
Engineering, Southeast University, Nanjing 211189, China, and also with the
State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210093, China (e-mail: jiangyichuan@yahoo.com.cn).

Z. Huang is with the Laboratory for Complex Systems and Social Comput-
ing, School of Computer Science and Engineering, Southeast University, Nan-
jing 211189, China, and also with the State Key Laboratory for Manufacturing
Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China (e-mail:
onlyhzc@gmail.com)

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2012.2186439

I. INTRODUCTION

TO MEET the increasing demand of large-scale cooperative
computational problems, cooperative distributed systems

(CDSs) have been investigated [1]–[4]. There are many prac-
tical CDSs, such as grids [1], [3], peer-to-peer (P2P) systems
[4], and ad hoc networks [2]. In general, many CDSs have the
following characteristics.

1) Nodes are autonomous and cooperative. Each node be-
haves autonomously by considering the surrounding sit-
uations [5]; the nodes can contribute their idle resources
and cooperatively work together to accomplish tasks [6].

2) Nodes are interconnected through networks, and inter-
actions are local and constrained by network structures.
Network structures can cope with large-scale situations
because each node only needs to know its surrounding
situations [6], [7]. Moreover, network structures can save
nodes’ energies because each node only communicates
with its neighbors and remote communication can be
implemented by forwarding among nodes [2].

3) Resources are distributed within the networks, and ac-
cess to resources is crucial to the system performance.
Many CDSs aim to achieve resource sharing, and thus,
communication time for accessing resources is crucial
[1], [3], [4].

4) Resource caching can be used to improve the perfor-
mance of resource access. Some resources are replicated
at certain places in the networks so that the access to those
resources is easier [2], [8], [9].

CDSs can be viewed as networked multiagent systems
(NMASs) in which agents represent the autonomous nodes and
interaction relations represent interconnections among nodes
[6]. The concept of NMASs enables users to represent CDSs at
an abstract level without needing to worry about the particulars
of the target system [6], [7], [10], [11]. An NMAS can be
depicted as a graph, G = 〈A,E〉, consisting of vertices (agents
A) and edges (interactions E); some resources are placed within
the network and can be accessed by agents for the execution of
tasks [12].

Task execution in multiagent systems can be described by
the agents’ operations when accessing required resources; thus,
task allocation is often implemented based on the accessibility
of required resources [1], [13]–[16]. In previous work, load
balancing was necessary for the allocation of multiple tasks
to reduce tasks’ waiting time at agents so that tasks could be
switched from heavy-burdened agents to light-burdened ones

1083-4427/$31.00 © 2012 IEEE

JIANG AND HUANG: THE RICH GET RICHER: PREFERENTIAL ATTACHMENT 1041

[1]. If there are too many tasks queuing for an agent, the
probability of the agent being assigned new tasks is reduced.
Therefore, load balancing in previous work is in accordance
with the adage “winner does not take all.”

However, previous approaches to task allocation and load
balancing do not match the peculiarities of real NMASs with
resource caching, as described in the following points.

1) In NMASs, resource caching is implemented to improve
resource access to enable the agents to execute allocated
tasks [2], [9]. If an agent has richer experiences of ex-
ecuting tasks (i.e., the agent is heavily burdened), it is
more probable that resource replicas will be placed to
ease the agent’s access. Therefore, the agent’s resource
access time in future task execution can be reduced [2],
[8], [9]. Although previous load balancing methods may
reduce the waiting time of a task by switching it to a
light-burdened agent, it will take more time to access
resources from the light-burdened agent than from the
heavy-burdened agent. Considering the importance of
communication time for accessing required resources in
the NMASs, it may be better to simply assign the task to
the heavy-burdened one.

2) Previous task allocation and load balancing methods
based on resources are often developed on the assumption
that the resources necessary to the tasks and resources
available from the agents are known; thus, each time that
the task allocation is implemented, the accurate infor-
mation of resource distribution in the system should be
obtained timely [1], [12]. However, in NMASs with re-
source caching, resources may be dynamically replicated
and distributed within the networks, particularly while
many tasks are executed [2]–[4], and it may be difficult to
acquire accurate resource information in a timely fashion.
Although there are some related studies on task allocation
with uncertain information [17]–[21], such methods may
bring about heavy costs for agents’ computing and com-
munication, influencing the overall performance of the
systems, particularly when the number of tasks is high.

To deal with the aforementioned problems, we propose the
following novel idea of task allocation based on preferential
attachment: Experienced agents receive more new tasks than
less experienced agents. Obviously, this task allocation method
accords with the social cliché “the rich get richer” [22], [23]. In
this paper, we investigate two types of preferential attachments
in task allocation: history and present preferential attachments.
Our basic reason is as follows: Due to resource caching, an
agent has higher future access to a resource if the agent has
richer history (or present) access experiences for the resource;
therefore, the agents that were (or are) heavily burdened with
tasks may have preferential rights to receive new tasks in
the future, which can reduce the agents’ communication time
to access resources. Therefore, our approach can be used in
the NMASs, in which communication time for the required
resource is crucial to executing tasks.

Moreover, because our task allocation approach is imple-
mented by simply relying on agents’ experiences of executing
tasks, it does not need to fully understand accurate information

about available resources in real time and can avoid bringing
about heavy costs for agents’ computing and communication.
Therefore, our approach is better suited than the previous work
for large-scale and dynamic NMASs.

The rest of this paper is organized as follows. In Section II,
we compare our work with the previous work. In Section III,
we describe NMASs with resource caching. In Section IV, we
formalize the optimization problem of task allocation. In
Section V, we propose a task allocation model based on pref-
erential attachment. In Section VI, we provide experimental
results to validate our proposed model. Finally, we discuss and
conclude this paper in Section VII.

II. RELATED WORK

Our research is related to resource-based task allocation
approaches, centralized and distributed task allocation ap-
proaches, task allocation with uncertain information, and load
balancing in task allocation. Generally, related work can be
categorized as follows.

1) Resource-based task allocation approaches.
The main goal of task allocation is to maximize the

overall performance of the system and fulfill tasks as
quickly as possible [24], [25]. Many related works also
aim to optimize tasks’ execution time [13], [14]. With-
out loss of generality, task execution can be described
through the agents’ operations when accessing required
resources [1], [25]; therefore, resource accessibility may
influence tasks’ execution time. Many related works were
implemented based on two types of resources: 1) a self-
owned resource-based approach implemented based on
the agents’ self-owned resource status [1], [16] and 2) a
contextual resource-based approach implemented based
on not only the agents’ self-owned resource status but
also their contextual resource status because agents may
cooperate with others within their contexts when they
execute tasks [15]. Generally, previous works based on
resource accessibility assume that accurate resource in-
formation can be known.

2) Centralized and distributed approaches.
On the other hand, traditional task allocation works can

be categorized into centralized [26] and distributed ap-
proaches [27] according to their allocation control mech-
anisms. In the centralized approach, there is a centralized
controller that implements task allocation. For example,
Fjuita and Lesser [28] present deadline-based multiagent
task decomposition and scheduling in an environment in
which one master agent is responsible for task allocation
and needs to know the information of the whole system.
In the distributed approach, a centralized controller is not
needed. For example, Shehory and Kraus [29] present
methods for task allocation via agent coalition formation
without a central authority. Bo An et al. [13], [14] present
the benchmark optimization method for multiresource
negotiation in task allocation, which utilizes a time-
dependent negotiation strategy in which the reserve price
of each resource is dynamically determined. Another typ-
ical distributed method is the contract net protocol [30],

1042 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 5, SEPTEMBER 2012

a well-known task sharing protocol in which each agent
in a network can be a manager or a contractor at different
times or for different tasks [31]. However, managers
in this method also need to know the information of
negotiated agents. In summary, agent status informa-
tion needs to be acquired in a timely manner for these
related works.

3) Task allocation with uncertain information.
There are some related studies considering task al-

location with uncertain and incomplete information. In
previous approaches, social or economics techniques are
used, such as negotiation, bidding/auction, trust, game
theory, etc. For example, Kraus et al. [17] present a
distributed approach in which a protocol is developed
to enable agents to negotiate and form coalitions to
execute tasks with uncertain heterogeneous information.
Ramchurn et al. [18] present trust-based mechanisms of
task allocation in the presence of execution uncertainty,
which take into account the trust between agents when al-
locating tasks. Mataric et al. [19] use the bidding/auction
mechanism to perform task allocation in uncertain en-
vironments. Game theory is used in the task allocation
of some heterogeneous distributed systems in which the
complete information of agent peers is unknown. For
example, Grosu and Chronopoulos [21] present a game-
theoretic framework for obtaining a user-optimal load
balancing scheme in heterogeneous distributed systems.
Moreover, in multirobot systems, a dynamic task allo-
cation mechanism is investigated, which allows agents
to change their behavior in response to environmental
changes or other agents’ actions to improve overall sys-
tem performance [20]. Such a dynamic allocation mech-
anism needs agents to have sensing and decision-making
abilities.

In summary, the aforementioned approaches may bring
about heavy costs for agents’ computing and communi-
cation, which may influence overall system performance,
particularly when the number of tasks is high.

4) Load balancing in task allocation.
If too many tasks are allocated to certain agents, the

tasks may be delayed and will not receive quick re-
sponses. To minimize the amount of time that tasks re-
main with an agent, tasks may be switched to other agents
with lower task loads, which is called load balancing.
Liu et al. [1] present a macroscopic characterization of
agent-based load balancing, in which complete informa-
tion about the number and size of task teams queuing for
agents is necessary. Chow and Kwok [32] investigate load
balancing for distributed multiagent computing, in which
a novel communication-based load balancing algorithm
is proposed by associating a credit value with each agent;
the credit of an agent depends on its current situation,
such as its affinity to a machine, its current workload,
its communication behavior, etc. Schaerf et al. [12] study
adaptive load balancing, in which information on global
resource distribution must be known to make global
optimal resource selections. Dhakal et al. [33] present a
regeneration-theory approach to dynamic load balancing

in distributed systems in the presence of delays, in which
heterogeneity in the processing rates of the nodes is taken
into account.

From above, we can see that load balancing is an
important idea for the allocation of multiple tasks, where
the number of tasks queuing for an agent is the determi-
native factor of the agent’s rights in future task allocation.
If there are too many tasks queuing for an agent, the
probability of the agent getting new tasks will be reduced
[1]. Therefore, the previous load balancing method of task
allocation accords with the adage “winner does not take
all” [34].

5) Our contribution.
In comparison with the related work, our work makes

the following contributions.
a) Previous load balancing methods based on the “winner

does not take all” theory can effectively reduce the
waiting time of tasks at agents [1]. In contrast to previ-
ous work, our “rich get richer” model can effectively
reduce the communication time of agents attempting
to access resources within the network. In fact, we
combine “rich get richer” and “winner does not take
all” to implement a compromise between preferential
attachment and load balancing, which can achieve
better performance than single preferential attachment
while there are too many waiting tasks.

b) Previous resource-based task allocation and load bal-
ancing methods are often premised on the assumption
that the resources needed by the tasks and resources
available from the agents are known; therefore, each
time that the task allocation is implemented, accurate
resource distribution information needs to be acquired
timely from the system [6]. In contrast with the previ-
ous work, our model is implemented by simply relying
on agents’ experiences of executing tasks and frees
task allocation from knowing the status of available
resources. Our model applies well to large dynamic
NMASs, in which it is difficult to obtain accurate
resource status information timely.

c) Although there are some related studies on the task
allocation with uncertain information, they may bring
about heavy costs to the agents’ computing and com-
munication, which may influence overall system per-
formance, particularly when the number of tasks is
high. Our approach avoids bringing about heavy costs
for agents’ computing and communication because it
is implemented by simply relying on agents’ experi-
ences of executing tasks.

III. NMASs WITH RESOURCE CACHING

A. Resource Caching in Multiagent Networks

In previous benchmark work on resource caching, two typi-
cal methods are used: One is plain caching, which means that
resource replicas are placed at the requesting agents [35], and
the other is intermediate caching, which means that resource
replicas are placed at intermediate agents (the agents between
a requesting agent and the agent that holds the requested

JIANG AND HUANG: THE RICH GET RICHER: PREFERENTIAL ATTACHMENT 1043

resource) [2], [8], [9]. Generally, intermediate caching is more
beneficial for the performance of systems in which the allocated
agents are not fixed; moreover, with the intermediate caching
method, the number of replicas within the network can be more
effectively reduced than with the method that places the replicas
at the requesting agents.

Resource caching is not our focus in this paper. There-
fore, without loss of generality, we present a simple resource
caching mechanism based on abstracting from some related
intermediate caching methods [2], [8], [9]. In resource caching,
cache locations can be dynamically adapted according to the
frequency of resource access. We also describe the eclipse
mechanism of resource replicas and make the seldom-accessed
resource replicas eclipse step by step, which results in saving of
agent storage.

1) Resource Caching Mechanism: While an NMAS is ini-
tially set up, the locality of resource ri is called ri’s original
inhabitation locality, denoted as OLri. After the system runs,
ri may be replicated at a place in the network, referred to as ri’s
caching locality, CLri.

Obviously, the original inhabitation locality of a resource is
always fixed, but a resource’s caching locality can be changed.
Let two localities in the network be Li and Lj . Let the shortest
path betweenLi and Lj be {Li, Li+1, . . . , Lj−2, Lj−1, Lj}. If
a resource changes its caching locality from Lj to Lj−n (1 ≤
n ≤ j − i), we can say that the resource replica migrates from
Lj to Li with n hops; the new locality after migration is
represented as Ln

Lj→Li
.

Now, we propose a simple resource caching mechanism as
Algorithm 1, where T is the set of tasks.

Algorithm 1. Resource caching in task execution.

1) ∀ t ∈ T :
1.1) Allocate the principal agent for t, at.
1.2) ∀ r ∈ Rt:

If the current locality of accessed resource r is its
original inhabitation locality, OLr:

1.2.1) Produce a replica of r, which is represented
by cr.
1.2.2) Migrate cr to Ln

OLr→Lat
.

else Migrate r to Ln
CLr→Lat

.
2) End.

From Algorithm 1, when a resource in the original inhabi-
tation locality is accessed, we should produce a replica of the
resource and move the replica toward the allocated agent with a
series of hops. When the resource replica in the caching locality
is accessed, we will only need to move the replica toward the
allocated agent with a series of hops.

Definition 1: Compactness degree of an agent set. Given a
set of agents, A, whose compactness degree is the inverse of the
mean length of the shortest paths between each pair of agents,
shown as

CDA = 1/

 ∑

ai,aj∈A
dij

 / (|A| · (|A|+ 1))

 (1)

where dij denotes the length of the shortest path between ai
and aj and |A| denotes the number of agents in A. Obviously,
the higher CDA is, the more compact the agents in A are.

Theorem 1: Given two agent sets in the multiagent network
G = 〈A,E〉, A1, A2 ⊆ A, |A1| = |A2|; all agents inA1 and A2

will access resource r. The probability of producing a replica of
r by A1 is PA1(r), and the probability of producing a replica of
r byA2 is PA2(r). We have the following: CDA1 > CDA2 ⇒
PA1(r) ≤ PA2(r).

Proof: We use the inductive method to prove Theorem 1.

1) While |A1| = |A2| = 2, the agent first accessing r in Ai

is ai1, and the second agent accessing r in Ai is ai2. Be-
cause the agents in A1 are more compact than the agents
in A2, the probability that a12 accesses the resource
replica produced by a11 is higher than the probability that
a22 accesses the resource replica produced by a21. Thus,
the probability that a12 produces a new resource replica is
less than the probability that a22 produces a new resource
replica. Therefore, we have PA1(r) ≤ PA2(r).

2) While |A1| = |A2| = k > 2, we assume PA1(r) ≤
PA2(r).

3) While |A1| = |A2| = k + 1, the agent jth-ly accessing
r in Ai is ai,j . According to Step 2, PA1−{a1,k+1}(r) ≤
PA2−{a2,k+1}(r). Because CDA1 > CDA2, the probabil-
ity that a1,k+1 accesses the resource replica produced by
any agent in (A1 − {a1,k+1}) is higher than the probabil-
ity that a2,k+1 accesses the resource replica produced by
any agent in (A2 − {a2,k+1}). Thus, the probability that
a1,k+1 produces a new resource replica is less than the
probability that a2,k+1 produces a new resource replica.
Therefore, we have PA1(r) ≤ PA2(r).

�
From Theorem 1 and Definition 1, we conclude that the set

with more compact agents produces fewer resource replicas.
Therefore, we should seek the set with more compact agents to
accomplish the task.

2) Eclipse of Resource Caching: To avoid the congestion of
redundant resource replicas in the multiagent network, we can
let some longtime unused resource replicas be terminated. This
process is called the eclipse of resource caching.

While a cached resource replica has not been accessed for
long time, we let it go back toward its original inhabitation
locality step by step. When it arrives at its original inhabitation
locality, it can be terminated. We can set a time period T ; after
every T time, all cached resource replicas in the multiagent
network will withdraw to their respective original inhabitation
localities with one hop. The cached resource replicas remaining
in the network are those that are accessed by agents most
recently and frequently. Idle resource replicas will eclipse step
by step.

Let N(i) be the maximum number of resource replicas in
the system at time i, Nt be the number of tasks arrived at a time
unit, Nr be the mean number of resources needed by one task,
T be the eclipse time, |R| be the mean number of resources that
an agent owns, and Ne(i) be the number of replicas eclipsed at
time i.

1044 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 5, SEPTEMBER 2012

Then, we formalize N(i+ 1) as

N(i+ 1) = N(i) +N ∗
t (Nr − |R|)−Ne(i) (2)

Finally, after a long enough time, we have

lim
i→∞

N(i+ 1) = lim
i→∞

(N(i) +Nt ∗Nr − |R| −Ne(i)) (3)

Because the limits of N(i+ 1) and N(i) are identical and
due to the eclipse mechanism

lim
i→∞

Ne(i) = lim
i→∞

N(i)/T

Therefore, we have

lim
i→∞

N(i) = Ni ∗ (Nr − |R|) ∗ T (4)

Therefore, we can adjust eclipse time T to control the maxi-
mum number of resource replicas in the system.

B. Resource Search in Multiagent Networks

When an allocated agent (the principal agent) lacks the
necessary resources to implement an allocated task, it may
negotiate with other agents in the network; if other agents have
the required resources (we call agents that provide resources to
the principal agent assistant agents), then the principal agent
and assistant agents will cooperate to implement the task. In
[15], we applied the concept of contextual negotiation into a
multiagent network and presented a novel contextual resource
search model. Now, we briefly introduce it here. Interested
readers can refer to our previous work in [15] for more details.

Let ai be the principal agent for task t and the resources
owned by ai be Rai. If the set of required resources for t is
Rt, then the set of resources lacking for ai to implement t is as
follows: Rt

ai
= Rt −Rai

.
If it is assumed that agent aj is negotiated by ai, the set of

resources owned by aj is Raj . If aj has any resources that are
required by ai to implement t, then the set of lacking resources
of ai to implement t will be deduced as follows: Rt

ai
= Rt

ai
−

Raj
.

Agent ai will negotiate with other agents from near to far
in the network until all required resources are satisfied, shown
as Algorithm 2. After Algorithm 2 is completed, a set of agents
for task t will be selected, denoted as At (which includes ai and
the assistant agents). Then, the agents in At will cooperatively
accomplish task t.

Algorithm 2. Resource search of agent ai in network.
/∗ ai is the principal agent, and A is the set of all agents ∗/

1) Set the tags for all agents in A to 0 initially;
2) Create Queue (Q);
3) Insert Queue (Q, ai);
4) Set the tag of ai to 1;
5) b = 0;
6) At = {ai};
7) Rt

ai
= Rt −Rai;

8) If Rt
ai

== {}thenb = 1;
9) While ((!EmptyQueue (Q)) and (b == 0)) do:

9.1) aout = Out Queue(Q);
9.2) R′ = Rt

ai
−Raout;

9.3) If R′ �= Rt
ai

then:
9.3.1) Rt

ai
= Rt

ai
−Raout;

9.3.2) At = At ∪ {aout};
9.4) If Rt

ai
== {}thenb = 1;

9.5) ∀ alocal ∈ Laout:
/∗ Laout is the set of neighbors of aout ∗/

if the tag of alocal is 0, then:
9.5.1) Insert Queue (Q, alocal);
9.5.2) Set the tag of alocal to 1;

10) If (b == 1)then Return(At)
else Return (False);
11) End.

From Algorithm 2, the principal agent will search its co-
operating agents for resources from near to far locations to
obtain the most compact set of allocated agents. According to
Theorem 1, task execution by such allocated agents can produce
the smallest number of new resource replicas in the network.

IV. FORMALIZATION OF TASK ALLOCATION

A. Optimization Problem of Task Allocation

The main goal of task allocation is to maximize the overall
performance of the system and fulfill the tasks as quickly as
possible [24], [25]. Thus, one of the objectives of task allocation
is to minimize the execution time of each task [1], [21], [32].
Because task allocation can be described as an optimization
problem [14], [36], we now formalize our objective to optimize
task allocation by extending the approach in [1] which is
implemented based on the optimization of the length of time
that tasks wait at agents.

When a task arrives in the system, the first step is to assign
the task to an agent (principal agent), which takes charge
of execution of the task. Next, the principal agent will seek
assistant agents for resources. Finally, the principal agent and
assistant agents will cooperatively execute the task; therefore,
communication time between the principal and assistant agents
is very important [15], [32]. Therefore, to reduce the execution
time of the task, we can reduce the utilities of two factors:
the waiting time of the task at agents and the communica-
tion time between the principal and assistant agents (i.e., the
communication time for accessing required resources within the
network).1

When a task t arrives, the system selects its principal agent,
denoted as at. The set of principal and assistant agents of t is
denoted as At. Without loss of generality, it can be assumed
that a resource can be accessed by only one task at the same

1In fact, task execution time also includes the processing time at agents.
Because this paper is concerned with the cooperation between agents in task
execution, now, processing times at all agents are assumed to be the same and
can be neglected.

JIANG AND HUANG: THE RICH GET RICHER: PREFERENTIAL ATTACHMENT 1045

time. Thus, if the principal and assistant agents are executing a
task, a new task would have to wait until all required resources
are available. Let Et be the execution time of task t, Wtj be the
waiting time of task t for resources at agent aj , and C(at, aj)
be the communication time between at and aj . The purpose of
the task allocation is to select the agent set At to minimize the
execution time of t

Et =
∑

aj∈At

Wtj +
∑

aj∈At,aj �=at

C(at, aj) (5)

under the constraints that agents’ resources are limited and each
resource can be accessed by only one task at a time. Therefore,
our task allocation goal can be described as the reduction of the
utilities of Wtj and C(at, aj).

B. Idealized Approach and Our Idea

The naive way to select the optimal At can be implemented
by exhaustive-trial method. In this approach, we can perform
an exhaustive trial by letting each agent act as the principal
one and select the one with the minimum execution time Et.
Obviously, although the exhaustive-trial method can return the
optimal task allocation result regarding execution time, it has
the following drawbacks: 1) It needs a centralized controller
to implement exhaustive trials for all agents, which will waste
much allocation time and is not applicable to large NMASs,
and 2) it needs the centralized controller to know all informa-
tion about the system timely, which is also not applicable to
dynamic NMASs. Therefore, a centralized scheduler based on
the exhaustive-trial method is not feasible for the handling of
the practical task allocation problem in large-scale and dynamic
NMASs.

To address the aforementioned problem, this paper presents
a novel idea of task allocation by simply relying on agents’
experiences of executing tasks, which does not need to know
all the accurate information of available resources in real time.
Our basic idea is this: Due to resource caching, an agent
has higher future access to a resource if the agent has richer
history (or present) accessing experiences for the resource;
thus, agents that were (or are) heavily burdened with tasks
may have preferential rights to receive new tasks in the future.
The advantage of our allocation idea is that it can reduce
the time for resource access, i.e., reduce the communication
time in (5).

We also apply load balancing in task allocation when the
benefit of preferential attachment (reduction in communication
time) is less than the loss brought by the waiting time of
queuing tasks. Now, load balancing on the base of preferential
attachment in task allocation can reduce both waiting time and
communication time in (5).

V. PREFERENTIAL ATTACHMENT-BASED

TASK ALLOCATION

A. History Preferential Attachment

1) HRF and HRF-Based Task Allocation: According to the
resource caching mechanism described in Section III-A,

the more frequently an agent accesses a resource in its history,
the nearer the resource replica is cached to that agent; thus, the
agent may have higher access to that resource. Therefore, an
agent’s history of accessing a resource can influence the agent’s
access to the resource in the future, which can be described as
“history deciding the future.”

When an agent accesses a resource to implement a task, a
replica of the resource is cached near the agent, according to
Section III-A1. However, according to the eclipse mechanism
of resource caching described in Section III-A2, a resource
replica may be eclipsed if it has not been used for long time. The
more recently an agent accesses a resource, the more probably
the resource replica remains near the agent.

We first set a start time and then compute an agent’s history
resource accessing factor (HRF) from a start time until the
current time. We can measure the resource accessing history
of an agent as follows.

Definition 2: Let two time points be t0 and t∗, t0 < t∗. From
time t0, the HRF of agent ai for resource rk at time t∗ is

ht0→t∗
i (k) =

∑
t0≤t≤t∗

(
1/(t∗ − t)∑

t0≤t≤t∗
(1/(t∗ − t))

nt
i(k)

)
(6)

where nt
i(k) is the number of rk’s that are accessed by ai at

time t and t0 is a predefined starting time for consideration.
Lemma 1: Given three time points, t00, t01, and t∗, t00 <

t01 < t∗, we have ht00→t∗
i (k) ≥ ht01→t∗

i (k) for any agents and
resources in the network.

Proof: According to Definition 2, ht00→t∗
i (k) =

ht00→t01
i (k) + ht01→t∗

i (k), and ht00→t01
i (k) ≥ 0. Thus, we

have ht00→t∗
i (k) ≥ ht01→t∗

i (k). �
From Lemma 1, now, we have a problem: If the predefined

starting time is set as early as possible, then the corresponding
HRF can be heightened. However, according to the eclipse
mechanism of resource caching described in Section III-A2, if
a cached resource has not been used for long time, it may be
moved back toward its original inhabitation locality and even
be terminated. Therefore, we should modify Definition 2; if
an agent accessed a resource frequently and recently, its HRF
for the resource is higher. We now present the definition of
standardized HRF as follows:

hi(k)=ht0→t∗
i (k)/(t∗ − t0)

=

(∑
t0≤t≤t∗

(
1/(t∗−t)∑

t0≤t≤t∗
(1/(t∗−t))

nt
i(k)

))
/(t∗−t0).

(7)

Obviously, the higher hi(k) is, then the more frequently and
recently agent ai accessed resource rk.

Definition 3: Accessibility of an agent to a resource. Given
a resource rk in the network, the set of cached replicas and
original one of rk is Rk. Now, we simply define the accessibility
of agent ai to resource rk as follows:

Ai(k) = 1/

(
min
rx∈Rk

l(Pix)

)
(8)

where Pix is the shortest path from ai to rx and l(Pix) is the
length of path Pix.

1046 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 5, SEPTEMBER 2012

Theorem 2: Given two agents in the network, ai and aj ,
ai and aj accessed resource rk to execute tasks from time t1
to t2. The accessibility of agent ay to resource rk at time tx
is denoted as Ax

y(k); the difference between the accessibilities
of ai and aj to resource rk at time tx is denoted as σx,
σx = |Ax

i (k)−Ax
j (k)|. Now, we consider the following three

situations.

1) A1
i (k) = A1

j (k): If ht1→t2
i (k) > ht1→t2

j (k), we have
A2

i (k) ≥ A2
j (k).

2) A1
i (k) > A1

j (k): If ht1→t2
i (k) > ht1→t2

j (k), we have
σ2 ≥ σ1.

3) A1
i (k) < A1

j (k): If ht1→t2
i (k) > ht1→t2

j (k), we have
σ2 ≤ σ1 while A2

i (k) ≤ A2
j (k) or A2

i (k) > A2
j (k).

Proof:

1) If A1
i (k) = A1

j (k), at time t1, the minimum length of the
shortest path from ai to any resource in Rk (denoted as
rik) is the same as the one from aj to any resource in
Rk (which is denoted as rjk). According to the resource
caching mechanism, the localities of rik and rjk at time
t2 are Lni

Lrik→Li
and L

nj

Lrik→Li
. Because ht1→t2

i (k) >

ht1→t2
j (k), the migration steps of rik to ai (ni) are greater

than those of rjk to aj (nj); thus, the length between
ai and Lni

Lrik→Li
is shorter than that between aj and

L
nj

Lrik→Li
. Therefore, we have A2

i (k) ≥ A2
j (k).

The proofs of 2) and 3) are similar to 1), so here, we
skip them to save space. �

In Theorem 2, we can see that higher HRF can definitely
improve an agent’s access to a resource. Therefore, the task
can be allocated to the agent with the highest HRF for the
required resource, which can reduce the communication time
in (5). The HRF-based task allocation is simply described as
follows: 1) Select the principal agent with the highest HRF for
required resources; 2) the principal agent searches all required
resources according to Algorithm 2, selecting assistant agents;
and 3) the principal agent and assistant agents cooperate to
execute the task.

2) C-HRF and C-HRF-Based Task Allocation: Each agent
situates within a context in the multiagent system [15], [37],
[38]; an agent’s resource access can be influenced by its con-
textual agents’ resource access histories. For an agent ai, if one
agent in ai’s context, aj , accessed a resource, the resource will
be cached toward aj ; now, ai’s access to the resource will also
be influenced because aj is in the context of ai. The nearer aj is
to ai, the more probably aj’s resource access history influences
ai’s resource access.

Definition 4: Let two time points be t0 and t∗, t0 < t∗. From
time t0, the contextual HRF (C-HRF) of agent ai for resource
rk at time t∗ is

Cht0→t∗
i (k) =

∑
aj∈Ci

(
1/dij∑

aj∈Ci
(1/dij)

ht0→t∗
j (k)

)
(9)

where Ci is the context of agent ai, which can be set from its
neighboring area to the whole network and dij is the distance

between agent ai and aj in the network; ai ∈ Ci, dii is less than
dij if aj �= ai. Similarly to (7), we can also propose a definition
of standardized C-HRF as follows:

Chi(k) =Cht0→t∗
i (k)/(t∗ − t0)

=

 ∑

aj∈Ci

(
1/dij∑

aj∈Ci
(1/dij)

ht0→t∗
j (k)

)
 /(t∗ − t0).

(10)

From Definition 4, if an agent’s contextual agents accessed
a resource frequently and recently, the agent may have higher
access to the resource even if it seldom accessed the resource
by itself. Therefore, the task can be allocated to the agent with
the highest C-HRF for the required resources, which is called
task allocation based on C-HRF.

B. Present Preferential Attachment

If there are tasks queuing for an agent, the execution of the
tasks will access some resources; according to the resource
caching mechanism, the accessed resources will be cached
toward that agent so that the agent’s future access to those
resources will be improved. Therefore, we can say that an
agent’s present access to a resource may influence the agent’s
access to the resource in the future, a situation in which the
“present is deciding the future.”

1) PRF and PRF-Based Task Allocation: Let the present
team of tasks queuing for agent ai and needing resource rk be
Qik and the size of Qik be sik. Then, we can define the present
resource accessing factor (PRF) as follows.

Definition 5: The PRF of agent ai for resource rk is

pi(k) = f(sik) (11)

where f is a monotonically increasing function.
Theorem 3: Let two agents in the network be ai and aj . The

present team of tasks queuing for agent ai and needing resource
rk is Qik, and the size of Qik is sik; the present team of tasks
queuing for agent aj and needing resource rk is Qjk, and the
size of Qjk is sjk. t1 denotes the current time. t2 denotes the
time when the queued tasks will be finished. The accessibility
of agent ay to resource rk at time tx is denoted as Ax

y(k); the
difference between the accessibilities of ai and aj to resource
rk at time tx is denoted as σx, σx = |Ax

i (k)−Ax
j (k)|. Now, we

consider the following three situations.

1) A1
i (k) = A1

j (k): If pi(k) > pj(k), we have A2
i (k) ≥

A2
j (k).

2) A1
i (k) > A1

j (k): If pi(k) > pj(k), we have σ2 ≥ σ1.
3) A1

i (k) < A1
j (k): If pi(k) > pj(k), we have σ2 ≤ σ1

while A2
i (k) ≤ A2

j (k) or A2
i (k) > A2

j (k).

Proof: The proof is similar to that of Theorem 2, so here,
we skip it to save space. �

JIANG AND HUANG: THE RICH GET RICHER: PREFERENTIAL ATTACHMENT 1047

Based on Theorem 3, an agent will have higher access to a
resource if it has a higher PRF for that resource. Therefore, the
task can be allocated to the agent with the highest PRF for the
required resources, which can reduce the communication time
in (5). After the principal agent is determined based on PRF, the
remaining process is similar to the HRF-based task allocation.

2) C-PRF and C-PRF-Based Task Allocation: As in
Section V-A2, for an agent ai, the resource access situation of
its contextual agents’ queuing tasks will influence ai’s future
access to resources. The nearer a contextual agent is to ai, the
more the contextual agent’s resource access situation of the
tasks in its queue influences ai’s future access to resources.
We present the definition of the contextual PRF (C-PRF)
as follows.

Definition 6: The C-PRF of agent ai for resource rk is

Cpi(k) =
∑

aj∈Ci

(
1/dij∑

aj∈Ci
(1/dij)

pi(k)

)
(12)

where Ci is the context of agent ai, which can be set from its
neighboring area to the whole network and dij is the distance
between agent ai and aj in the network; ai ∈ Ci, dii is less than
dij if aj �= ai.

From Definition 6, if an agent’s contextual agents’ queuing
tasks are rich, the agent may have higher future access to such
resources even if the agent itself has fewer queuing tasks. Thus,
a task can be allocated to the agent that has the highest C-PRF
for the required resources, which is called task allocation based
on C-PRF.

3) On Load Balancing: As mentioned earlier, if an agent
possesses more queuing tasks, it may accordingly be assigned
more new tasks. However, if too many tasks are crowded on
to certain agents, the waiting time may outperform the benefit
(reduction in communication time) brought by the resource
caching of executing queuing tasks. Thus, we should apply
load balancing in task allocation when the benefit brought
by preferential attachment is less than the loss brought by
the waiting time of queuing tasks. The next case study can
demonstrate this situation.

Case Study 1: Let a multiagent network be G = 〈A,E〉 and
the communication time between any neighbor agents be tε.
The resource caching eclipse time period is t∗; now, there is a
resource rk. ∃ai ∈ A, sik = n; ∀ t ∈ Qik, the execution time
of task t is tt. twill access rk for once. Now, if a task tnew is
allocated to ai, then tnew will be executed after the tasks in
Qik are all finished. Then, now, the influence of Qik on tnew
includes the following.

1) The benefit brought by resource caching: Because
sik = n, resource rk will be cached and migrated toward
ai with n steps; thus; the saved communication time by
allocating tnew to ai is ntε.

2) The loss brought by resource eclipse within the waiting
time: tnew will wait for ntt time to execute, in which the
cached resource will migrate back to its original locality
for ntt/t∗ steps; thus; the wasted time is (ntt/t∗)tε.

3) The loss brought by waiting time: ntt.

4) Therefore, while task tnew is allocated to agent ai for
resource rk and now sik = n, the net benefit is

(n− n · tt/t∗) · tε − n · tt. (13)

When we allocate tasks, we should perform load balanc-
ing if the value of (13) is negative. Because tε is usually
less than tt in reality, the load balancing should be taken
into account when there is a long queue of tasks.

According to Case Study 1, we should perform load balanc-
ing when the queue of tasks is too long. Therefore, we can
modify (11) as follows:

p∗i (k) = α(sik) · pi(k) = α(sik) · f(sik) (14)

where α(sik) is an attenuation function, 0 ≤ α(sik) ≤ 1; the
value of α(sik) decreases monotonically from 1 to 0 with the
increase of sik.

Therefore, to perform load balancing, the definition of C-
PRF in (12) should also be modified, shown as follows:

Cp∗i (k) =
∑

aj∈Ci

(
1/dij∑

aj∈Ci
(1/dij)

p∗j(k)

)

=
∑

aj∈Ci

(
1/dij∑

aj∈Ci
(1/dij)

(α(sjk) · f(sjk))
)
. (15)

Obviously, preferential attachment-based task allocation
with consideration of load balancing can reduce both the wait-
ing time and communication time in (5).

C. History–Present Combined Preferential Attachment

Now we combine the two preferential attachments, referred
to as history–present combined preferential attachment in task
allocation.

Definition 7: History–present combined resource accessing
factor (HP-RF) of agent ai for resource rk can be defined as

hpi(k) = λ1 · hi(k) + λ2 · pi(k). (16)

Contextual HP-RF (C-HP-RF) of agent ai for resource rk
can be defined as

C − hpi(k) = λ1 · Chi(k) + λ2 · Cpi(k). (17)

If load balancing is applied, (16) and (17) can be modified
as follows:

hp∗i (k) =λ1 · hi(k) + λ2 · p∗i (k) (18)

C − hp∗i (k) =λ1 · Chi(k) + λ2 · Cp∗i (k) (19)

where λ1 and λ2 are used to determine the relative importance
of the two types of preferential attachments, λ1 + λ2 = 1.

Then, the task can be allocated to the agent that has the
highest HP-RF or C-HP-RF for the required resources, which
is called task allocation based on history–present combined
preferential attachment.

1048 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 5, SEPTEMBER 2012

Fig. 1. Execution time comparison between SRF, CRF, exhaustive-trial, HRF, and CHRF models. (a) FRFS. (b) MIFS. (c) AAS.

VI. EXPERIMENT VALIDATIONS AND ANALYSES

A. Introduction of Experiments

We make experiments based on our developed simulation
platform for NMASs in large-scale dynamic topology envi-
ronments (ComDysc-v1). The platform is developed in Java
(JDK 1.6) using Eclipse IDE [39] and is supported by the
National High Technology Research and Development Program
of China. The tasks in experiments are similar to our previous
work [15]; to save paper space, we do not describe them in
detail here.

When we select a principal agent in task allocation, the key
is to satisfy the requirements of resources for executing tasks.
Without loss of generality, we use three criteria to satisfy the
different resource requirements of tasks in our experiments: 1)
First required resource-first satisfy (FRFS); 2) most important
resource-first satisfy (MIFS); and 3) all resources-averagely
satisfy (AAS).

Task execution in multiagent systems can be described
by agents’ operations when accessing required resources.
Therefore, we mainly compare our methods with the pre-
vious resource-based task allocation methods: 1) self-owned
resource-based task allocation model in related work (SRF
Model); 2) contextual resource-based task allocation model
(CRF Model); and 3) the idealized approach: exhaustive-trial
method.

B. Validation for History Preferential Attachment

We will now validate the history preferential attachment in
task allocation by comparing the performances of the following
models: SRF, CRF, exhaustive-trial, HRF, and CHRF. We make
a series of experiments in which the number of agents is 200,
each agent owns four types of resources by itself, and each
task needs 20 resources. The results are shown in Fig. 1, where
the x-axis denotes the number of tasks and the y-axis denotes
the total execution time of tasks. Moreover, we set different
withdrawal time periods of resource caching for the exhaustive-
trial, HRF, and CHRF models; for example, HRF 20s denotes
the HRF model whose withdrawal time period of resource
caching is 20 s.

From the experiment results, we conclude the following:
1) HRF and CHRF models outperform the SRF model, which
shows that the history preferential attachment in task alloca-
tion can effectively reduce communication time for accessing

resources; 2) CHRF outperforms CRF in FRFS and MIFS,
which shows the history preferential attachment is obviously
feasible while certain resources are preferential in task exe-
cution; CRF performs very well when AAS is used because
CHRF implements task allocation essentially relying on the
unbalanced effects of preferential attachment, but now, AAS
averages the overall required resources so that the unbalanced
effects in task allocation are not obvious; 3) CHRF outperforms
HRF, which shows that it is more advanced when the context
is considered in the network; and 4) with an increase in the
resource caching withdrawal time period or number of tasks,
the effect of historical preferential attachment becomes more
obvious.

In conclusion, the experiment results prove that history pref-
erential attachment in task allocation can effectively improve
system performance, particularly when the network context
situation is considered or the number of tasks is high.

C. Validation for Present Preferential Attachment

Now, we validate the present preferential attachment in task
allocation by comparing the following models: SRF, CRF,
exhaustive-trial, PRF, and CPRF. The results are shown in
Fig. 2, where SRF_LB, PRF_LB, and CPRF_LB apply load
balancing.

From the experiment results, we conclude the following:
1) PRF and CPRF models absolutely outperform the SRF
model and are close to the CRF model, which shows that
present preferential attachment in task allocation can reduce
communication time for resource access more than the SRF
model; 2) CPRF outperforms CRF in FRFS and MIFS, which
shows the present preferential attachment is obviously feasible
when certain resources are preferential in task execution; CRF
performs very well when AAS is used because CPRF imple-
ments task allocation essentially relying on the unbalanced
effects of preferential attachment, but now, AAS averages the
overall required resources so that the unbalanced effects in task
allocation are relaxed; 3) CPRF outperforms PRF, which shows
that it is more advanced when network context is considered;
4) with an increase in the resource caching withdrawal time pe-
riod or the number of tasks, the present preferential attachment
effect becomes more obvious; and 5) PRF_LB outperforms
PRF, and CPRF_LB outperforms CPRF. Therefore, it is better
to combine present preferential attachment and load balancing.

JIANG AND HUANG: THE RICH GET RICHER: PREFERENTIAL ATTACHMENT 1049

Fig. 2. Execution time comparison between SRF, CRF, exhaustive-trial, PRF, and CPRF models. (a)–(c) do not apply load balancing. (d)–(f) apply load balancing.
(a) FRFS. (b) MIFS. (c) AAS. (d) FRFS. (e) MIFS. (f) AAS.

In conclusion, the experiment results prove that the present
preferential attachment in task allocation can effectively im-
prove system performance, particularly when the network con-
text situation is considered or the number of tasks is high.
Moreover, it is better to compromise between preferential at-
tachment and load balancing while there are too many waiting
tasks. Therefore, preferential attachment and load balancing
can sometimes be compatible in task allocation.

D. Validation for History–Present Combined
Preferential Attachment

Now, we validate the history–present combined preferential
attachment in task allocation by comparing the performances of
the following models: SRF, CRF, exhaustive-trial, HPRF, and
CHPRF. The results are shown in Fig. 3, where HPRF_LB and
CHPRF-LB are the HPRF and CHPRF models applying load
balancing.

From the experiment results, we conclude the following:
1) HPRF and CHPRF models absolutely outperform the SRF
model and are close to the CRF model, which shows that
the history–present combined preferential attachment of task
allocation can reduce communication time for resource access
more than the SRF model; 2) CHPRF outperforms CRF in
FRFS and MIFS, which shows the history–present combined
preferential attachment is obviously feasible while certain re-
sources are preferential in the task execution; CRF performs
very well when AAS is used because CHPRF implements task
allocation essentially relying on the unbalanced effects of pref-
erential attachment, but now, AAS averages the overall required
resources so that the unbalanced effects in task allocation are
relaxed; 3) CHPRF outperforms HPRF, which shows that it
is more advanced when the network context is considered;
4) with an increase in the resource caching withdrawal time

period or number of tasks, the history–present combined pref-
erential attachment effect becomes more obvious; 5) the HPRF
model outperforms both PRF and HRF models, and therefore,
it is better if we integrate the history and present preferen-
tial attachments; and 6) HPRF_LB outperforms HPRF, and
CHPRF_LB outperforms CHPRF; therefore, it is better if we
can make a compromise between the history–present combined
attachment and load balancing while there are many tasks
waiting to execute. Moreover, the performance gap between
HPRF_LB and HPRF (or between CHPRF_LB and CHPRF)
is smaller than that between PRF_LB and PRF (or between
CPRF_LB and CPRF in Fig. 2) because HPRF includes the
history preferential attachment which does not consider load
balancing.

In conclusion, the experiment results prove that the
history–present combined preferential attachment in task allo-
cation can effectively improve system performance, particularly
when the network context situation is considered and the num-
ber of tasks is high. Moreover, the integration of history and
present preferential attachments outperforms either history or
present preferential attachment alone in task allocation.

E. Comparison With the Idealized Approach

We will compare our approaches with the idealized approach
(exhaustive-trial method) by summarizing the related results
of the experiments in Section VI-B–D, shown in Table I. The
comparison in Table I is measured as follows. Let the task
execution time using our approach be x and the time using
the idealized approach be y. Their comparison is c = 1− ((x−
y)/y); we can compute the mean of such values in a series of
experiments. From Table I, we can see the following: 1) When
load balancing is not applied, the mean utilities produced by our
approaches are within almost 70%–95% of those produced by

1050 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 5, SEPTEMBER 2012

Fig. 3. Execution time comparison between SRF, CRF, exhaustive-trial, PRF, HRF, HPRF, and CHPRF models. (a) FRFS. (b) MIFS. (c) AAS. (d) FRFS.
(e) MIFS. (f) AAS. (g) FRFS. (h) MIFS. (i) AAS.

TABLE I
COMPARISON BETWEEN OUR APPROACHES AND THE IDEALIZED APPROACH (EXHAUSTIVE-TRIAL METHOD)

the idealized approach, which denotes that our approaches are
effective; 2) when load balancing is considered, our approaches
cannot produce good results in the early stages of experiments;
the potential reason for this is that the highly burdened agents
do not have absolute dominance over resource access, so the
benefit brought by preferential attachment is less than the loss
caused by the waiting time of queuing tasks; and 3) when load
balancing is applied, our approaches produce mean utilities
within 76%–80% of those produced by the idealized approach
at the late stages of experiments. The potential reason for this is
that, now, the highly burdened agents have absolute dominance
over resource access, so the benefit brought by preferential
attachment is more than the loss caused by the waiting time
of queuing tasks.

VII. CONCLUSION AND DISCUSSION

In practical NMASs such as grids and P2P systems, com-
munication time for accessing required resources is crucial to
system performance. In this paper, we are inspired by the idea
that “the rich get richer” to investigate task allocation in the
NMASs with resource caching. We find that task allocation
based on preferential attachment can effectively reduce agents’
communication time to access resources for executing tasks. On
the other hand, we also find that it is better to make a compro-
mise between preferential attachment and load balancing when
there are too many tasks waiting for execution. Therefore, the
ideas of “rich get richer” and “winner does not take all” may
sometimes be compatible in the task allocation of NMASs with
resource caching. Furthermore, our model is implemented by

JIANG AND HUANG: THE RICH GET RICHER: PREFERENTIAL ATTACHMENT 1051

simply relying on the agents’ experiences of executing tasks
and does not need to know the accurate resource distribution
information in the system. Thus, our model could be well
applied in large-scale dynamic situations in which accurate
resource information is difficult to acquire timely.

Regarding the generality and future work of our model, the
following are several aspects for discussion.

1) For simplicity, this paper abstracts the distance between
two agents as the hops between them and assumes the
distances between any two adjacent agents are the same.
Such assumption is reasonable in some applications when
the hops between two agents are crucial to their com-
munication, such as sensor networks. However, in other
situations, distances in terms of resources may not be the
same between adjacent agents; they could be a complex
function that depends on the type of tasks to be per-
formed. In such a situation, we simply need to modify
the concept of distance and revise the resource-searching
algorithm by taking the meaning of distance into account.
Therefore, our model can be extended into other real
situations in which the distances have more complex
meanings.

2) In our model, the agents are assumed to differ essentially
in their access to resources. Such an assumption is rea-
sonable in some real situations in which all agents are
identical. However, in some circumstances, agents may
have different computable functions or other resources
that cannot be cached, such as CPU power and memory
storage. In such a situation, when we perform task alloca-
tion, we can select the principal agent that can satisfy the
required computable functions and has the highest HRF
(or PRF) for required resources. Therefore, our presented
model can be extended into other situations in which
agents have different computable functions.

3) This paper is only concerned with cooperative agents,
i.e., all agents can contribute their idle resources and cor-
porately work together to accomplish tasks. However, in
reality there are some selfish multiagent systems in which
each agent optimizes its own object independently of the
others [13], [21]. In the task allocation of such selfish
multiagent systems, automated negotiation [13] or nonco-
operative game [21] is used in related benchmark works,
and equilibrium can be obtained by a distributed nonco-
operative policy. Therefore, in future work, to extend our
model into situations in which agents are selfish, we will
also introduce the automated negotiation or game theory
in the resource search process when the agents can afford
the additional computing and communication costs.

4) Our model is designed for NMASs in which resource
access can be improved through caching by executing
tasks and communication time for accessing resources
is crucial to system performance. In fact, the “rich get
richer” method can also be generalized to other systems
where preferential attachments exist, e.g., agents have
self-learning abilities and can improve their capacities
through executing tasks. Therefore, our future work will
try to improve the generalizability of the “rich get richer”
idea in other NMASs.

REFERENCES

[1] J. Liu, X. Jin, and Y. Wang, “Agent-based load balancing on homogeneous
minigrids: Macroscopic modeling and characterization,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 7, pp. 586–598, Jul. 2005.

[2] L. Yin and G. Cao, “Supporting cooperative caching in ad hoc networks,”
IEEE Trans. Mobile Comput., vol. 5, no. 1, pp. 77–89, Jan. 2006.

[3] Y. Cardenas, J.-M. Pierson, and L. Brunie, “Uniform distributed cache
service for grid computing,” in Proc. 16th Int. Workshop DEXA,
Copenhagen, Denmark, Aug. 22–26, 2005, pp. 351–355.

[4] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt, “Improving data
access in P2P systems,” IEEE Internet Comput., vol. 6, no. 1, pp. 58–67,
Jan./Feb. 2002.

[5] H. K. Pillai and S. Shankar, “A behavioral approach to control of dis-
tributed systems,” SIAM J. Control Optim., vol. 37, no. 2, pp. 388–408,
Mar. 1999.

[6] B. Bulka, M. Gaston, and M. des Jardins, “Local strategy learning in
networked multi-agent team formation,” J. Autonomous Agents Multi-
Agent Syst., vol. 15, no. 1, pp. 29–45, Aug. 2007.

[7] S. Abdallah and V. Lesser, “Multiagent reinforcement learning and self-
organization in a network of agents,” in Proc. 6th Int. Conf. AAMAS,
Honolulu, HI, May 14–18, 2007, pp. 172–179.

[8] W. Rao, L. Chen, A. W.-C. Fu, and G. Wang, “Optimal resource placement
in structured peer-to-peer networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 21, no. 7, pp. 1011–1026, Jul. 2010.

[9] J. Zhao, P. Zhang, G. Cao, and C. R. Das, “Cooperative caching in wireless
P2P networks: Design, implementation, and evaluation,” IEEE Trans.
Parallel Distrib. Syst., vol. 21, no. 2, pp. 229–241, Feb. 2010.

[10] Y. Jiang, J. Hu, and D. Lin, “Decision making of networked multiagent
systems for interaction structures,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 41, no. 6, pp. 1107–1121, Nov. 2011.

[11] Y. Jiang and Z. Li, “Locality-sensitive task allocation and load balancing
in networked multiagent systems: Talent versus centrality,” J. Parallel
Distrib. Comput., vol. 71, no. 6, pp. 822–836, Jun. 2011.

[12] A. Schaerf, Y. Shoham, and M. Tennenholtz, “Adaptive load balancing:
A study in multi-agent learning,” J. Artif. Intell. Res., vol. 2, pp. 475–500,
1995.

[13] B. An, V. Lesser, and K. M. Sim, “Strategic agents for multi-resource ne-
gotiation,” J. Autonom. Agents Multi-Agent Syst., vol. 23, no. 1, pp. 114–
153, Jul. 2011.

[14] B. An, F. Douglis, and F. Ye, “Heuristics for negotiation schedules
in multi-plan optimization,” in Proc. 7th Int. Conf. AAMAS, Estoril,
Portugal, May 12–16, 2008, pp. 551–558.

[15] Y. Jiang and J. Jiang, “Contextual resource negotiation-based task allo-
cation and load balancing in complex software systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 5, pp. 641–653, May 2009.

[16] S. Kraus and T. Plotkin, “Algorithms of distributed task allocation for
cooperative agents,” Theoretical Comput. Sci., vol. 242, no. 1/2, pp. 1–
27, Jul. 2000.

[17] S. Kraus, O. Shehory, and G. Taase, “Coalition formation with uncertain
heterogeneous information,” in Proc. 2nd Int. Conf. AAMAS, Melbourne,
Australia, Jul. 14–18, 2003, pp. 1–8.

[18] S. D. Ramchurn, C. Mezzetti, A. Giovannucci, J. A. Rodriguez-Aguilar,
R. K. Dash, and N. R. Jennings, “Trust-based mechanisms for robust and
efficient task allocation in the presence of execution uncertainty,” J. Artif.
Intell. Res., vol. 35, no. 1, pp. 119–159, May 2009.

[19] M. J. Mataric, G. S. Sukhatme, and E. H. Qstergaard, “Multi-robot task
allocation in uncertain environments,” Autonom. Robots, vol. 14, no. 2/3,
pp. 255–263, Mar.–May 2003.

[20] K. Lerman, C. Jones, A. Galstyan, and M. J. Mataric, “Analysis of dy-
namic task allocation in multi-robot systems,” Int. J. Robot. Res., vol. 25,
no. 3, pp. 225–241, Mar. 2006.

[21] D. Grosu and A. T. Chronopoulos, “Noncooperative load balancing in
distributed systems,” J. Parallel Distrib. Comput., vol. 65, no. 9, pp. 1022–
1034, Sep. 2005.

[22] J. Jiang and X. Xia, “Prominence convergence in the collective synchro-
nization of situated multi-agents,” Inform. Process. Lett., vol. 109, no. 5,
pp. 278–285, Feb. 2009.

[23] M. E. J. Newman, “Clustering and preferential attachment in growing
networks,” Phys. Rev. E, vol. 64, p. 025 102(R), 2001.

[24] B. Hong and V. K. Prasanna, “Adaptive allocation of independent tasks to
maximize throughput,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 10,
pp. 1420–1435, Oct. 2007.

[25] Y.-C. Jiang and J. C. Jiang, “A multi-agent coordination model for the
variation of underlying network topology,” Expert Syst. Appl., vol. 29,
no. 2, pp. 372–382, Aug. 2005.

[26] M. Erdmann and T. Lozano-Perez, “On multiple moving robots,”
Algorithmica, vol. 2, no. 4, pp. 477–521, 1987.

1052 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 5, SEPTEMBER 2012

[27] D. Palmer, M. Kirschenbaum, J. Murton, and K. Zajac, “Decentralized
cooperative auction for multiple agent task allocation using synchronized
random number generators,” in Proc. IEEE/RSJ, Int. Conf. Intell. Robots
Syst., Las Vegas, NV, Oct. 2003, pp. 1963–1968.

[28] S. Fjuita and V. R. Lesser, “Centralized task distribution in the presence of
uncertainty and time deadlines,” in Proc. 2nd ICMAS, Kyoto, Japan, Dec.
10, 1996, pp. 87–94.

[29] O. Shehory and S. Kraus, “Methods for task allocation via agent coalition
formation,” Artif. Intell., vol. 101, no. 1/2, pp. 165–200, May 1998.

[30] R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. Comput., vol. C-29,
no. 12, pp. 1104–1113, Dec. 1980.

[31] S. Aknine, S. Pinson, and M. F. Shakun, “An extended multi-agent ne-
gotiation protocol,” J. Autonom. Agents Multi-Agent Syst., vol. 8, no. 1,
pp. 5–45, Jan. 2004.

[32] K.-P. Chow and Y.-K. Kwok, “On load balancing for distributed mul-
tiagent computing,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 8,
pp. 787–801, Aug. 2002.

[33] S. Dhakal, M. M. Hayat, J. E. Pezoa, C. Yang, and D. A. Bader, “Dy-
namic load balancing in distributed systems in the presence of delays:
A regeneration-theory approach,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, no. 4, pp. 485–497, Apr. 2007.

[34] D. M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, and C. L. Giles,
“Winners don’t take all: Characterizing the competition for links on the
web,” in Proc. Nat. Acad. Sci., Apr. 2002, vol. 99, no. 8, pp. 5207–5211.

[35] K. Ranganathan and I. Foster, “Design and evaluation of dynamic repli-
cation strategies for a high-performance data grid,” in Proc. Int. Conf.
Comput. High Energy Nucl. Phys., Beijing, China, Sep. 3–7, 2001,
pp. 712–715.

[36] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Chemical reaction optimization for
task scheduling in grid computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 22, no. 10, pp. 1624–1631, Oct. 2011.

[37] A. Padovitz, S. W. Loke, and A. Zaslavsky, “Multiple-agent perspectives
in reasoning about situations for context-aware pervasive computing sys-
tems,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 4,
pp. 729–742, Jul. 2008.

[38] X. Fan, M. McNeese, B. Sun, T. Hanratty, L. Allender, and J. Yen,
“Human-agent collaboration for time stressed multi-context decision
making,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 2,
pp. 306–320, Mar. 2010.

[39] Eclipse.org home, 2011. [Online]. Available: http://www.eclipse.org/

Yichuan Jiang (M’07) received the Ph.D. degree in
computer science from Fudan University, Shanghai,
China, in 2005.

He is currently a Professor at the School of Com-
puter Science and Engineering, Southeast Univer-
sity, Nanjing, China. He has published more than
70 scientific articles in refereed journals and con-
ference proceedings, such as IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, Jour-
nal of Parallel and Distributed Computing, IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CY-

BERNETICS PART A: SYSTEMS AND HUMANS, IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS PART C: APPLICATIONS & RE-
VIEWS, Proceedings of the International Joint Conferences on Artificial In-
telligence,and Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems. His main research interests include multiagent
systems, social networks, and complex distributed systems.

Dr. Jiang is a Senior Member of China Computer Federation and Chinese
Institute of Electronics, a member of the editorial board of Advances in Internet
of Things, an Editor of the International Journal of Networked Computing and
Advanced Information Management, an Editor of Operations Research and
Fuzziology, and a member of the editorial board of the Chinese Journal of
Computers.

Zhichuan Huang received the B.E. degree in in-
formation engineering from Southeast University,
Nanjing, China, in 2009, where he is currently work-
ing toward the M.E. degree.

His main research interests include social net-
works and multiagent systems.

